

Frame-wise streaming end-to-end speaker diarization with non-autoregressive self-attention-based attractors

Di Liang, Nian Shao, Xiaofei Li

Westlake University, Hangzhou, China

Introduction

Experiments

Topic Streaming Speaker Diarization: answering "who speaks when" in streaming applications

Method Deep-learning based streaming speaker diarization with frame-wise attractors

- Frame-wisely detect a flexible number of speakers and extract/update their corresponding attractors.
- A look-ahead mechanism allows leveraging some future frames.

Network

A causal speaker embedding encoder by masked self-attention module.

Dataset

- Simulated data: Extract single-speaker utterances using VAD and generate (1,2,3,4)-speaker mixtures with noises and reverberation.
 - Data source: Switchboard Cellular (Part 1 and 2) & 2005-2008 NIST Speaker Recognition Evaluation (SRE)
 - Speakers: 3244, 405, and 405 for training, validation, and test set
- CALLHOME data: Telephone call voice data set

Metrics

Diarization error rate (DER)

- Look-ahead with 1-dimensional convolution.
- An online attractor decoder to extract frame-wise attractors.

Contributions

- Excellent speaker diarization performance on both simulated dataset and real-world CALLHOME data.
- Computational cost is lower compared to block-wise online methods.

Method

Formulation: a multi-class detection task

- $X = (\boldsymbol{x}_t \in \mathbb{R}^{F'} | t = 1, \dots, T)$: LogMel feature vector sequence
- $Y = (\boldsymbol{y}_t \in \{0, 1\}^S | t = 1, \dots, T)$: speaker label sequence
- *F*: dimension of feature vector
- S: number of speakers

Network Architecture

The basic strategy is to design

✓ a causal speaker embedding encoder: masked self-attention and Conv1D along time dimension.

Results

• Results on simulated data

Fable: DER	5 (%)	and	RTF	on	simulated	data.
------------	-------	-----	-----	----	-----------	-------

Mathada	RTF	latency	Number of speakers			
Methous		(s)	1	2	3	4
Offline EEND-EDA	0.006	_	0.4	4.0	9.9	14.1
EEND-EDA+FLEX-STB	0.028	10	0.7	4.7	13.0	17.1
EEND-EDA+FLEX-STB	0.223	1	1.9	6.7	15.1	19.6
FS-EEND (prop.)	0.026	1	0.6	5.1	11.1	15.8

• Results on CALLHOME data

Table: DERs (%) on CALLHOME data.

Mathada	latency Number of speakers					
Methous	(s)	2	3	4		
Offline EEND-EDA	_	7.7	13.7	22.4		
BW-EEND-EDA	10	11.8	18.3	25.9		
EEND-EDA+FLEX-STB	10	9.6	14.4	22.0		
EEND-EDA+FLEX-STB	1	13.0	16.4	23.6		
FS-EEND (prop.)	1	10.1	14.6	21.2		
EEND-EDA+FLEX-STB+VCT	- 1	11.1	16.0	21.7		

an online attractor decoder: extract attractors frame-wisely and is realized with a non-autoregressive self-attention network.

FS-EEND+VCT (prop.) 9.4 14.0 20.9

• t-SNE visualization of speaker embeddings

Figure: t-SNE visualization of embeddings in 2-dimensional space. (a) the proposed FS-EEND, (b) without L2-normalization, (c) without embedding similarity loss and (d) without look-ahead.

Figure: Architecture of the proposed FS-EEND system.

Conclusions

- FS-EEND processes audio stream and performs diarization frame by frame, with a causal embedding encoder and an online attractor decoder.
- FS-EEND shows superiority in diarization performance, system latency, and computational complexity.

Code^{*a*}

^ahttps://github.com/Audio-WestlakeU/FS-EEND