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Introduction

* Neural network pruning is effective for compressing ASR models.

* Pruning a multilingual ASR model entails several rounds of pruning and re-
training.

* Propose an adaptive masking approach to efficiently prune a multilingual
ASR model.

* Proposed method adapts a pruning mask with data in training.

« Compare performance with existing methods in two scenarios:
1. Sparse monolingual models for each language.
2. One sparse multilingual model for all languages.

Recap: Existing Pruning Methods

« Suppose a dense neural net f(x; 8) with a binary pruning mask m € {0,1}°1,

 [terative magnitude pruning (IMP) [1]
o [Initialization. 8 = 6, and m = 1, where 6, are the pre-trained weights
Repeat
1. Train f(x;m © ) for T steps to obtain f(x;m © 67).
2. Prune p% of total weights that has small magnitudes fromm © 6,
3. Assign 6, to 6 for the next iteration.
Untilm reaches the target sparsity

* Lottery ticket hypothesis (LTH) [2]
 Rewind the sub-network by assigning 6, to 6 in step 3 instead.

 ASR Pathways [3]
« Stage (1): Identify language-specific sub-networks by IMP or LTH.
« Stage (2): Fine-tune each pathway with a monolingual batch.

Drawback in Existing Pruning Methods

 The sub-network structure remains fixed throughout training.
 May commit early to a sub-optimal choice.
 May propagate errors to further fine-tuning stages.
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Figure 1. Progressive pruning schedule [4]: prune a network at a low sparsity and
incrementally steps up to the targetsparsity. The pruning mask can be fixed for the training
cycles at any sparsity level.

Proposed Adaptive Masking (monolingual)

 Masked-out: prune “softly”
* Prune weights in the network by setting them to zero.
 Keep pruned weights trainable.

 The adaptationstepn
* Re-rank the magnitude of weights after n steps of training.
* Noten < T,whereT is the pruning interval.
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Figure 2. Flowchart of the training and pruning process with adaptive masking enabled for
monolingual data

Proposed Adaptive Masking (multilingual)
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Figure 3. Flowchart of the training and pruning process with adaptive masking enabled
for multilingual data

 Foralanguage z, define a “free-zone” sub-network maskm, =1 —

UlinL, 12z M.

* Prune “softly” from weightsinm,,. © 6 , wherem,,, = m, Um,.

 The procedure is language-specific by maintaining monolingual batches.
 For pruning on all languages after T steps, prune “softly” for each language.

 The procedure is language-agnostic, sharing weights newly trained.

Experiment Setup & Results

 Dense model: a streaming RNN-T model [5].
« Dataset: Multilingual Librispeech (MLS) dataset [6].

e Scenario1: aconsistent 5.3% relative WER reduction.

* One less training stage compared to ASR Pathways.

Mask can : Monolingual or
Stage Model change? Sparsity Multilingual training? EN FR IT NL Avg.
Ref. 56M Dense / 0% Monolingual 12.15 16.00 27.62 23.23 | 19.75
(1) 187M Dense / 0% Multilingual 1291 1090 16.94 17.56 | 14.58
LAP No 70% Multilingual 13.82 1198 27.771 19.32 | 18.21
(2) IMP No 70% Monolingual 10.74 11.26 17.90 18.38 | 14.57
LTH No 70% Monolingual 10.80 10.38 18.44 17.48 | 14.28
3) ASR Pathways (IMP-70%) No 70% Multilingual 11.15 10.68 17.53 16.90 | 14.06
ASR Pathways (LTH-70%) No 70% Multilingual 11.39 1020 17.58 15.84 | 13.75
(2) IMP Yes 70% Monolingual 10.07 1090 17.21 1698 | 13.79
Proposed LTH Yes 70% Monolingual 10.54 991 17.06 16.63 | 13.53

Table 1. WER (%) results on the MLS test set, pruning a dense multilingual ASR model. The proposed
approach allows the mask to change in training and is compared to other pruning methods for
monolingual training scenario.

 Scenario 2: a better 5.8% relative WER reduction.
« Efficient pruning starting from a language-agnostic pruning
(LAP) mask.
« Strong extensions to more languages.

e e Mask :
Model Initialization change? Sparsity FR NL Avg.

ASR LTH-70% No 70% 10.73  16.23 | 13.48
Pathways

ASR LAP-70% No 70% 11.98 19.32 | 15.65
Pathways
Dynamic LTH-70% Yes 70% 11.31 15.55 | 13.43

ASR LTH-50% Yes 70% 1048 14.92 | 12.70
Pathways LTH-20% Yes 70% 10.99 16.17 | 13.58
Dynamic LAP-70% Yes 70% 1098 16.54 | 13.76

ASR LAP-50% Yes 70% 10.82 16.25 | 13.54
Pathways LAP-20% Yes 70% 10.88 16.43 | 13.65

Table 2. WER (%) results on the MLS test set, utilizing language- specific pruning
masks. The proposed approach is compared to an existing method for bilingual
training scenario.

Model Initialization | Sparsity EN FR IT NL Avg.
ASR

LTH-70% 70% 13.56 10.53 17.10 16.37 | 14.39
Pathways
Dynamic
ASR LTH-50% 70% 14.84 1035 16.10 15.15 | 14.11
Pathways

Table 3. WER (%) results on the MLS test set, utilizing language- specific pruning masks.
The proposed approach is compared to an existing method, extending to four languages.
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