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Appearance information bounds solution space of 2D-to-3D lifting

Introduction | 3D human pose estimation from monocular video
B 2D-to-3D lifting B ill-posed problem

® estimates 3D pose(s) only from 2D pose(s) detected by another detector

T
® much lower error than image-based methods [14] 1 |
® relative 3D coordinates from root joint (typically center-hip) \ \
standing man from top view sitting man from front view
—_ —_ ]
\/ one 2D pose can be mapped to multiple 3D poses
o existing methods: consider temporal information only
image 2D pose 3D pose

our method: considers appearance as well

Method | appearance information of subject

B Noveltyd CNN (AFE) added on PoseFormer9, B Novelty(@ Regularization on image features using

camera-bone angles
a 2D-to-3D-based network

L, ® Camera-bone angles
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at both ends of i-th bone
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Why camera bOne angles Experl ment * indicates the experiment was conducted in our environment. Otherwise, values were taken from original papers.
Given (||v;]|, K, 6;), 2D-to-3D lifting solved analytically A " Method Human3.6M MPI-INF-3DHP
pproac etho
(K: camera intrinsic parameters) # frames MPIJPE [mm] 4 # frames MPJPE [mm] J
However, training model to extract Image-based Pavlalos+2018 [5] 1 56.2 1 -
® ||v;|| may cause overtraining MargiPose [7) 1 2>.4 1 8>.2
*PoseFormer + AFE 81 59.8 9 69.6
We focus on camera-bone angles Oure *PoseFormer + AFEW/ Lyogress | 81 52.4 / 9 64.8
*PoseFormer + AFE w/ L,p 81 44.8 9 47.9

Conclusion & future work

- B
B Conclusion Future work

® proposed to bound solution space of 2D-to0-3D method, an ill-posed problem, ® Replacement based 2D-t0-3D network with SOTA

. . . . ® Evaluation on unseen camera angles
by considering appearance information of subject as well.

® proposed regularization loss using camera-bone angles on image features.

® empirically showed the proposed method improves performance.
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