IVMSP-P18.10 3D POSE ESTIMATION FROM NEC **MONOCULAR VIDEO WITH CAMERA-BONE ANGLE REGULARIZATION ON THE IMAGE FEATURE**

Asuka Ishii, Hiroo Ikeda (NEC)

Appearance information bounds solution space of 2D-to-3D lifting

Introduction 3D human pose estimation from monocular video

- 2D-to-3D lifting
 - estimates 3D pose(s) only from 2D pose(s) detected by another detector
 - much lower error than image-based methods [14]
 - relative 3D coordinates from root joint (typically center-hip)
- ill-posed problem

Method | appearance information of subject

- **Novelty** (**CNN (AFE**) added on PoseFormer^[29],
 - a 2D-to-3D-based network
- concatenation
- Ð

image feature

2D pose feature

- **Novelty**² Regularization on image features using camera-bone angles
 - Camera-bone angles between camera optical axis e_z and bones v computed from ground-truth

at both ends of *i*-th bone

• **Regularization loss** L_{AR}

makes D, distance between image features of minibatch samples, **proportional** to S, **unsimilarity of camera-bone angles** of the samples

Why camera-bone angles?

Given $(||v_i||, K, \theta_i)$, 2D-to-3D lifting solved analytically (*K*: camera intrinsic parameters) However, training model to extract

Experiment

* indicates the experiment was conducted in our environment. Otherwise, values were taken from original papers.

Approach	Method	Human3.6M		MPI-INF-3DHP	
		# frames	MPJPE [mm] 🗸	# frames	MPJPE [mm] 🗸
Image-based	Pavlalos+2018 [5]	1	56.2	1	_
	MargiPose [7]	1	55.4	1	85.2
2D-to-3D-based	*PoseFormer [10]	81	<u>49.9</u>	9	<u>50.0</u>
Ours	*PoseFormer + AFE	81	59.8	9	69.6
	*PoseFormer + AFE w/ L _{regress}	81	52.4	9	64.8
	*PoseFormer + AFE w/ L _{AR}	81	44.8	9	47.9

- $||v_i||$ may cause overtraining
- *K* requires large extra training data [13]

We focus on camera-bone angles

Conclusion & future work

Conclusion

proposed to bound solution space of 2D-to-3D method, an ill-posed problem,

by considering appearance information of subject as well.

- proposed regularization loss using camera-bone angles on image features.
- empirically showed the proposed method improves performance.

Future work

- Replacement based 2D-to-3D network with SOTA
- Evaluation on unseen camera angles