
TCNAS: Transformer Architecture Evolving in Code
Clone Detection

Hongyan Xu2,3, Xiaohuan Pei4, Xiu Su1,4, Shan You5, Chang Xu4
1 Big Data Institute, Central South University

2 School of Computer Science, Faculty of Engineering, the University of New South Wales, Australia
3Data61, The Commonwealth Scientific and Industrial Research Organisation (CSIRO)

4School of Computer Science, Faculty of Engineering, The University of Sydney, Australia
5SenseTime Research

Motivation
Code clone detection: Code clone detection

aims at finding code fragments with syn-
tactic or semantic similarity.

Syntactic and Semantic Similarity Detection:
Aiming to find code fragments that are
similar either syntactically or semantically.

Semantic Long-Term Context: Most existing
methods ignore the alignment of semantic
long-term context, focusing primarily on
syntactic similarity.

Manual Model Design: Reliance on human-
designed models for source code encod-
ing, requiring expert input and extensive
time for experimentation and refinement.

Issues:
• The prevailing emphasis on syntactic de-

tection fails to capture the full spectrum of
code similarities, missing crucial semantic
relationships.

• The dependency on expert-driven manual
model development is not only inefficient
but also introduces bottlenecks in adapt-
ing to new languages or frameworks.

• Existing methods often struggle to gen-
eralize across different coding languages
and styles, reducing their applicability in
varied development environments.

• The challenge of dealing with sparse and
noisy data in large codebases, which com-
plicates the task of accurate clone detec-
tion.

Contribution
• Innovative Framework Integration: Pro-

poses a neural architecture search (NAS)-
based framework incorporating trans-
formers for code clone detection, effec-
tively capturing long-term dependencies
and optimizing model structures.

• Transformative Code Parsing and Anal-
ysis: Transforms code structure into se-
quential dataflow, significantly enhancing
the extraction of key features by leverag-
ing transformer architecture.

• Empirical Validation and Superior Per-
formance: We conduct various empiri-
cal experiments on the benchmark, which
covering all four types of code clone de-
tection. The results demonstrate our ap-
proach consistently yields competitive de-
tection scores across a range of evalua-
tions.

Experimental Settings
• Datasets used: BigCloneBench, which is

a standard benchmark for code clone de-
tection. It is abstracted from 60 thousand
code snippets which are tagged across ten
distinct functionalities. The functionali-
ties of code snippets in the benchmark are
widely used the programming scenarios,
such as web download and SQL rollback.

• Hardware platform: NVIDIA Tesla V100
GPUs.

• Software platform: Pytorch.
• Setting: Trained for 200 epochs with a

batch size of 256, using the AdamW opti-
miser with a dynamic learning rate reduc-
tion strategy.

Framework of proposed model
Specifically, our framework first
parses the structure of the code,
then transforms it into sequential
data of the dataflow. This transfor-
mation facilitates key feature ex-
traction by the transformer model.

Main method of TCNAS
Current methods mainly follow a left as-
signed NAS (LANAS) principle for the eval-
uation of each width, which induces the train-
ing unfairness of channels in supernet.
The probability of training the i-th channel is
expressed as Pi = n−i+1

n . This makes chan-
nels closer to the left train more often, caus-
ing uneven training and evaluation bias. This
bias affects the supernet’s ability to accurately
rank performance.
To address this, we introduce a new supernet.
It evaluates each width using sub-networks
for both left and right channels. Essentially, it
consists of two identical networks, Sl and Sr,

evaluated using the LA principle but counting
channels in reverse. This promotes channel fair-
ness during training. As a result, for each train-
ing step:

T (d, l) = Lt(wl
d;S ,W , d,Dtr) (1)

T (d, r) = Lt(wr
d;S ,W , d,Dtr) s.t. d ∈ U (A) ,

(2)

where T (d, l) and T (d, l) indicate left and right
part of super-network, respectively. With this
setting, our super-network is optimized as:

W∗
TC = arg min

wd∈W
E

d∈U(A)
[[T (d, l) + T (d, r)]]) (3)

Schematic diagram of TCNAS

(a)Supernet example (b)Channel assignment of supernets
Figure (a) A toy example of the supernet. We present an example of a search with 6 searchable
channels in each layer. (b) Examples of Different Weight Sharing Patterns. In LaNAS, the ’c’ leftmost
channels are assigned to the sub-network of width ’c’, with all channels being utilized at different
times. In contrast, our TCNAS allows all channels to be used an equal number of times, thereby
enhancing the supernet’s ability to fairly rank all architectures.

Experimental results on skin cancer dataset

(a) DeiT-small (b) DeiT-based

(c) Twins-small (d) Twins-based
Figure: Impact of token’s length for each search strategy. Figure shows that using a token type

combining source code and dataflow improves model performance. The results reveals dataflow
captures code semantics better than traditional syntactical features like tokens and AST nodes.


