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Figure 2. Classical PATE network architecture. 
Classical PATE uses four convolution blocks 

Figure 3. Quantum PATE network architecture. 
Quantum PATE uses two with the additional VQC blocks

Figure 4. VQC block for MNIST classification. 
The VQC block encodes latent embeddings 
from convolution blocks within quantum 
PATE into quantum states represented by 
10-qubits. 𝑈(𝑥) denotes the quantum 
algorithm for angle encoding. ∅!, 𝜃!, and 
𝜔! are the parameters to optimize. The 
dashed box denotes one subcircuit of the 
VQC block that is repeated two times. The 
dial to the far right represents that the 
circuit has two outputs. The expectation of 
𝜎" is measured on two qubits.
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Figure 1. Schematic overview of PATE

Table 1. Results from binary MNIST 
classification. Accuracies of classical PATE and 
quantum PATE after 20 epochs. The private 
quantum classifier is more accurate and 
successful for ε between 0.01 and 0.1. The 
number of teachers is set as 4.

Figure 5. Accuracy vs. Epsilon for 4 teachers in 
classical PATE and quantum PATE. We averaged 
the results from 10 experiments, and the error 
bar denotes the standard deviation. (A), (B), and 
(C) respectively show the result of 1, 10, and 20 
epoch training.
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Differential Privacy (DP)

• A mathematical way to protect individuals when 

their data is used in data sets.

• Seeks to address privacy concerns through the 

privacy-loss framework.

• DP has two hyperparameters

• ε : the privacy budget (=privacy loss L, explicates 

the differences in the distributions characterized 

by two similar queries) to the system

• δ :  probability of leaking more information than 

allowed by the privacy budget (=privacy cutoff)

Quantum Machine Learning (QML)

• Quantum machine learning implement 

machine learning algorithms by utilizing 

quantum computing via quantum circuit.

• Quantum computing utilizes qubits, which 

can exist in multiple states simultaneously 

due to the principles of superposition and 

entanglement.

• As quantum circuits are differentiable, and a 

quantum computer itself can compute the 

change in control learnable parameters.

Impacts
• We demonstrated the potential of hybrid quantum-classical framework for accurate and privacy-preserving 

machine learning
• QPATE shows a challenge of balancing accuracy and privacy (ε values)
• Hybrid approach improves prediction accuracy at low ε values compared to classical DNNs

Limitations
• Trade-off between accuracy and privacy not investigated based on number of teachers
• Further research needed to establish quantum advantage in differential privacy
• Potential of VQC in PATE evaluated with limited subcircuits and qubits; scalability requires exploration
• Hybrid quantum-classical classifiers evaluated in simplified settings; needs more complex tasks


