Quantum Privacy Aggregation of Teacher Ensembles (Q-PATE) for **Privacy Preserving Quantum Machine Learning**

Introduction

Differential Privacy (DP)

- A mathematical way to protect individuals when their data is used in data sets.
- Seeks to address privacy concerns through the privacy-loss framework.
- DP has two hyperparameters
- ε : the privacy budget (=privacy loss *L*, explicates the differences in the distributions characterized by two similar queries) to the system
- δ : probability of leaking more information than allowed by the privacy budget (=privacy cutoff)

Quantum Machine Learning (QML)

- Quantum machine learning implement machine learning algorithms by utilizing quantum computing via quantum circuit.
- Quantum computing utilizes qubits, which can exist in multiple states simultaneously due to the principles of superposition and entanglement.
- As quantum circuits are *differentiable*, and a quantum computer itself can compute the change in control learnable parameters.

Impacts

- We demonstrated the potential of hybrid quantum-classical framework for accurate and privacy-preserving machine learning
- QPATE shows a challenge of balancing accuracy and privacy (ε values)
- Hybrid approach improves prediction accuracy at low ε values compared to classical DNNs

view our paper here William Watkins¹, Heehwan Wang², Sangyoon Bae², Huan-Hsin Tseng⁴, Jiook Cha², Samuel Yen-Chi Chen³, Shinjae Yoo⁴

Johns Hopkins University¹, Seoul National University², Wells Fargo³, Brookhaven National Lab⁴

Discussion

• Trade-off between accuracy and privacy not investigated based on number of teachers • Further research needed to establish quantum advantage in differential privacy • Potential of VQC in PATE evaluated with limited subcircuits and qubits; scalability requires exploration • Hybrid quantum-classical classifiers evaluated in simplified settings; needs more complex tasks

 σ_z is measured on two qubits.

Limitations

view our paper here

δ	classical PATE	quantum PATE
10^{-5}	0.534 ± 0.0992	$\textbf{0.688} \pm 0.0163$
10^{-5}	0.985 ± 0.0215	$\textbf{0.992} \pm 0.0098$
10^{-5}	$\textbf{0.997} \pm 0.0046$	0.99 ± 0.0134
10^{-5}	$\textbf{0.997} \pm 0.0046$	0.991 ± 0.0137