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ABSTRACT

Existing video watermarking embeds robust watermarks in
each frame of the video for copyright protection and tracking.
However, just as any content written on a blank paper is easily
perceived, embedding watermarks in the texture-poor frames
impairs imperceptibility. Common geometric attacks such as
scaling and rotation pose a significant challenge to the exist-
ing video watermarking. Image watermarking based on mo-
ments is robust against geometric attacks. However, moment-
based watermarking is difficult to migrate to the video due
to its lack of perceptual guarantee and high computational
cost. In this paper, we propose an adaptive video watermark-
ing scheme by exploring the relationship between moments
and video textures, which can adaptively select texture-rich
frames to embed watermarks for perceptual guarantee. Fur-
thermore, we utilize the properties of moment calculation in
videos to optimize efficiency. Extensive experiments show
that the proposed method can achieve better imperceptibility
than existing methods while maintaining strong robustness.

Index Terms— Adaptive video watermarking, moment,
robust, imperceptibility

1. INTRODUCTION

In the past decades, watermarking schemes have been ex-
tensively studied [1–3]. Video watermarking is essential for
protecting video copyright and tracking [4]. Recently, Liu
et al. [5] used the distortion function [6] to achieve texture
adaption. Yang et al. [7] embedded watermark in the high-
frequency component of the discrete cosine transform (DCT)
can resist intense compression. This work mainly focuses
on compression attacks. Some researchers have reported that
deep neural networks (DNN) can be applied in video water-
marking [8, 9]. Due to the limitation of computing capabil-
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ity, the current research is limited to small-resolution videos
only. Huan et al. [10] proposed a method for adaptively se-
lecting the decomposition level of dual-tree complex wavelet
transform (DT CWT) based on the video resolution to ob-
tain the best performance. Compared to non-adaptive video
watermarking [7, 11, 12], adaptive video watermarking offers
superior performance. However, existing watermarks lack an
adaptive mechanism and have limited robustness against geo-
metric attacks. [10].

The moment-based watermarking approach has strong ro-
bustness against geometric attacks. Polar harmonic Fourier
moments (PHFMs) [13] and Bessel-Fourier moments (BFMs)
[14, 15] are commonly used moments. However, compared
with image watermarking, moment-based video watermark-
ing is less studied. The main challenges of applying mo-
ments to video watermarking are as follows. First, the video
is composed of multiple frames and the picture content of
each frame will be different with the lapse of video playing
time [16, 17]. Therefore, the visual quality and robustness
of watermarks with the same embedding mechanism on dif-
ferent video frames will be different. The direct application
of existing moment-based image watermarking techniques to
video watermarking cannot guarantee the imperceptibility of
each frame. Second, the computational cost of moments is
large [18], and video watermarking requires high efficiency
for embedding (especially for live scenarios).

Inspired by this, we propose an adaptive video watermark-
ing scheme, which can adaptively filter texture-rich frames to
embed watermarks for perceptual guarantee. Moreover, un-
like images, video has a large amount of data. In order to
meet the requirements of embedding watermarks when the
video is played in real-time, we have optimized the method of
calculating moments for fast calculation. Thanks to the adap-
tive mechanism and the geometric invariance of moments, we
further extend the robustness and imperceptibility scope of
existing schemes. The main contributions of this paper are
two-fold:

• We design an adaptive watermarking scheme by ex-
ploring the relationship between moments and video
textures, which can adaptively select texture-rich video



frames to embed watermarks for perceptual guarantee.

• We optimize the efficiency based on the independence
of the moment basis function and video content, which
makes the moment technique practically applicable to
video watermarking.

2. MOTIVATION

Applying the existing moment-based image watermarking al-
gorithm to video suffers from the following challenges. First,
if each frame of the video is treated as a static image and
embedded using a fixed embedding strategy, which has lim-
ited imperceptibility when used for frames with different tex-
tures. Second, the time complexity of the moments compu-
tation is large, which can make the algorithm less efficient if
the moments are computed frame by frame. [13] obtained the
best performance among current moment-based image water-
marking schemes. What will happen if we directly migrate
the scheme in [13] to video? Now, we do a test and observe
the experimental results. Without losing generality, we take
the standard video ’Sintel trailer’ as an example, which has a
resolution of 1280×720 and a frame rate of 25 fps, containing
1253 frames. The human visual system (HVS) is not sensitive
to the chromaticity U-channel, which contributes to the im-
perceptibility of the watermark. Therefore, we embed 63 bits
of the watermark in the center circular area of the U-channel
of each frame (YUV 4:2:0) using the scheme in [13]. Fig. 1
shows a comparison of the imperceptibility of the watermark
embedded by [13] in frames with different texture richness
(relatively rich texture in 550th frame and relatively poor tex-
ture in 118th frame). Note that here we embed watermarks of
the same capacity and the same intensity in the U-channel of
each frame. It is clear that the watermark signal will be more
easily perceived by the human eye in the more texture-poor
118th frame. Besides that, the embedding time of [13] is up
to 1.52 hours. This is unacceptable for practical applications.
Thus, an adaptive mechanism should be explored so that the
watermark is embedded in the texture-rich frames for percep-
tual guarantee and optimizes the efficiency of the scheme as
much as possible.

3. ADAPTIVE VIDEO WATERMARKING

We propose an adaptive video watermarking scheme, which
obtains the texture features of video frames based on moments
and adaptively selects texture-rich frames for watermark em-
bedding and extraction.

3.1. Calculation of Moments

A YUV 4:2:0 video M with frame number F and a resolu-
tion of p × q can be expressed as M = {mk, k ∈ NF }. mk

denotes the kth frame of the video, which can be represented
as mk = {yk,uk,vk}. yk, uk, and vk are the Y, U, and V

(a) 550th frame (b) 118th frame

(c) Watermarked (a) (d) Watermarked (b)

Fig. 1. Comparison of the imperceptibility of embedding the
watermark [13] on frames with different texture richness.
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(b) BFMs

Fig. 2. Illustrations of radial basis functions of unit disk-based
orthogonal moments (PHFMs and BFMs).

components of the kth frame. The resolution of U channel is
1/4 of Y channel, i.e. uk = {uk(i, j), i ∈ Np/2, j ∈ Nq/2}.
We embed the watermark in the circular region uc

k in the cen-
ter of the U component. Unit disk-based orthogonal moments
have better geometric invariance. Therefore, we need to rep-
resent uc

k in unit polar coordinates, i.e. uc
k = {uc

k(r, θ), r ∈
[0, 1), θ ∈ [0, 2π)}. The order n and repetition m video frame
moment C = {Cn,m, (n,m) ∈ Z2} is defined as the inner
product 〈uc

k,Rn,Am〉 of the uc
k on the domain Ω:

Cn,m = 〈uc
k,Rn,Am〉 =

∫∫
Ω

uc
k(r, θ)R∗n(r)A∗m(θ)rdrdθ, (1)

where the asterisk ∗ denotes the complex conjuate. Angular
basis function Am(θ) = exp(jmθ)(j =

√
−1) and radial basis

function Rn(r) could be of any form.

3.2. Adaptive Watermark Embedding

In the field of pattern recognition, moment features are of-
ten used to provide a semantic description of image content,
so they can also be used to measure the texture richness of a
video. Fig. 2 gives the radial basis functions of PHFMs and
BFMs as an example. Similar to the frequency coefficients in
traditional orthogonal transforms such as DCT, the obtained
amplitudes of each order and each repetition moment repre-
sents the distribution of the current frame content at different
frequencies. When the order n is fixed, the moments whose



repetitions are the opposite of each other (±m) have the same
amplitude and are conjugate to each other. The moments of
zero repetition are similar to the direct current (DC) coeffi-
cient in the DCT transform, which is related to the average
intensity in the video frame. Therefore, we can express the
texture feature TF of a video frame in terms of the amplitude
of the positive repetition moments, i.e.

TF =
∑
n

∑
m∈N+

〈uc
k,Rn,Am〉 =

∑
n

∑
m∈N+

Cn,m. (2)

We compare texture feature TF of the video frame with
a threshold Temb ∈ R+. When TF > Temb, the texture-
rich frames are adaptively selected for watermark embedding,
while for the texture-poor frames, we keep them unchanged to
ensure imperceptibility. So that we have a set of the texture-
rich frame. We assume that w = {wn,m, n,m ∈ N+} is the
binary watermark. The C = {Cn,m, n,m ∈ N+} in uc

k are
calculated by Eq. (1). The quantization equation is as follows

|Cw
n,m| =

{
Q(|Cn,m|) + 3/4∆, wn,m = 1

Q(|Cn,m|+ 1/4∆) + 1/4∆, wn,m = 0,
(3)

where Q(x) = floor(x/∆) · ∆ and |Cw
i | denotes the water-

marked amplitude of moment. And the corresponding water-
marked moment denotes as Cw

i . The watermarked U-channel
center region (uc

k)w is obtained by

(uc
k)w = uc

k + (
∑
n

∑
m

Cw
n,mRnAm −

∑
n

∑
m

Cn,mRnAm),

(4)
We adaptively replace the original central region uc

k with
the watermarked central region (uc

k)w to obtain a water-
marked U-channel uw

k . Finally, combine the yk, uw
k , and vk

to get the watermarked frame mw
k . Traversing all frames to

get the final watermarked video Mw.

3.3. Adaptive Watermark Extraction

Given a watermarked video Mw, we obtain its U-channel
frames and extract the texture feature (TF ) described in Sec-
tion 3.2. Then, we compare TF with a threshold Text ∈ R+.
When TF > Text, the watermarked frames can be adaptively
obtained, and then we extract the watermark from these wa-
termarked frames. The extraction equation is as follows

ŵn,m =

{
1, mod(|Cw

n,m|,∆) ≥ 1/2∆

0, otherwise,
(5)

where ŵ = {ŵn,m, n,m ∈ N+} is the extracted watermark.

4. EFFICIENCY OPTIMIZATION

Among the unit disk-based orthogonal moments, the compu-
tational time complexity of BFMs is the highest [18]. Without
losing generality, we use BFMs for the implementation of the

|𝑪𝒏.𝒎|

(a) |Cn,m| of Fig. 1 (a)

|𝑪𝒏.𝒎|

(b) |Cn,m| of Fig. 1 (b)

Fig. 3. Comparison of the amplitudes of BFMs with positive
repetition for 550th frame and 118th frame.

video watermarking scheme. The time complexity of calcu-
lating moments is related to the definition of the radial basis
functions Rn. For BFMs, RBFM

n is defined as follows

RBFM
n (r) =

1

2πan
Jv(λnr), (6)

where v is a real constant and Jv(·) is the Bessel function of
the first kind [19]. an = [Jv+1(λn)]2 /2 is the normalization
constant. λn is the n-th zero of Jv(x).

Assume that the highest order nmax = K, maximum rep-
etition mmax = K, and the number of a video frame is F .
According to Eq. (1), O(F × K2 × (q/2)2) Bessel function
Jv(·), multiplication, and addition are required to calculate all
BFMs. In fact, we analyze Eq. (1) to find that Rn, Am, uc

k

are independent of each other. Therefore, we calculate Rn

and Am only once and reuse it when calculating the BFMs
for different frames. After optimization, the time complexity
is O(K2 × (q/2)2) Jv(·) and O(F ×K2 × (q/2)2) multiplica-
tion and addition. Thus, the number of calculations of Jv(·) is
effectively reduced.

5. EXPERIMENTAL EVALUATION

5.1. Experimental Setup

Data. We evaluate our method on nine videos with a resolu-
tion of 1280 × 720 and a frame rate of 25 fps, ranging from
smooth to complex from the test set stated in [10,20]: Vidyo1,
Vidyo4, Kristen and Sara, In to Tree, Stockholm, Mobcal, Shields,
Park Joy and Sintel trailer.
Parameter. The maximum order and repetition of BFMs
nmax = mmax = 7, and the quantization step length ∆ = 3.6.
The embedding threshold Temb = 50 and the extraction
threshold Text = 75.2. All experiments were performed on a
PC with a 3.6 GHz Intel Core i7 CPU and 32GB RAM.
Comparison. We compare our scheme with four existing
state-of-the-art schemes including two recent non-moment
video watermarking [7, 10], and two moment-based image
watermarking [13, 21] that treats video sequences as a series
of static images and applies them. For a fair comparison, we
embed the same 63 bits watermark message for every frame
in [7,13,21] and our scheme. For [10], only a 1-bit watermark
is embedded in each frame due to the limitation of its scheme.



Table 1. Comparison of the average PSNR, SSIM, capacity,
and embedding time. The best and second-best results are
highlighted in bold and underlined, respectively.

Schemes non-moment moment-based Ours[10] [7] [13] [21]
PSNR (dB) 43.59 40.28 47.77 47.63 48.74

SSIM 0.90 0.85 0.98 0.98 0.99
Capacity (bit) 1 63 63 63 63

Time (s) 0.42 0.03 4.38 2.98 0.19
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Fig. 4. Relationship between imperceptibility and texture.

5.2. Effectiveness of Adaptive Mechanism

We take the ’Sintel trailer’ as a video example. Fig. 3 shows
the amplitudes of BFMs with positive repetition for texture-
rich 550th frame and texture-poor 118th frame. It can be seen
that the amplitudes are larger for 550th frame, while they tend
to be close to zero in 118th frame. Watermark is directly em-
bedded in every U component without an adaptive mecha-
nism. TF and PSNR curves of different frames are partially
shown in Fig. 4. It is obvious that there is a strong corre-
lation between imperceptibility and texture. It is consistent
with the results of the analysis in Section 3.2. Then, we use
the adaptive mechanism to obtain a watermarked video. We
then perform H.264/AVC encoder compression (quantifica-
tion parameter, i.e. QP, is equal to 40) and a scaling 0.5 attack
on the watermarked video to obtain the attacked video. Fig. 5
shows the TF curves from 100th frame to 600th frame of the
original video, watermarked video and attacked video. It can
be seen that the adaptive mechanism eliminates texture-poor
frames (e.g., 245th frame is subtitled with an all-black back-
ground, and 430th frame is black screen transitions). Besides,
the extractor can accurately determine which frames contain
watermarks and the extraction process is blind.

5.3. Imperceptibility and Computational Cost

The average (peak signal-to-noise ratio) PSNR, (structural
similarity index) SSIM, the embedding capacity per frame,
and the average embedding time per frame for the five algo-
rithms are given in Table 1. For a fair comparison, in our
scheme, we only calculate the PSNR, SSIM, and embedding
time of the frames with embedded watermarks. It can be seen
that our scheme obtains the highest PSNR and SSIM. The
adaptive mechanism can effectively improve imperceptibil-
ity. Besides, compared to existing moment-based methods,
our scheme takes less average embedding time, which is due

Table 2. Comparison of the average BER(%). The best and
second-best results are highlighted in bold and underlined, re-
spectively.

Attacks non-moment moment-based Ours[10] [7] [13] [21]
H.264 (QP=28) 1.15 0.10 0.46 0.37 0.42
H.264 (QP=40) 8.07 0.53 4.34 5.30 4.03

Scaling 1.1 5.70 N/A 1.28 1.22 1.11
Scaling 1.3 6.81 N/A 1.20 1.10 1.08
Scaling 0.5 32.63 N/A 3.20 2.41 1.72
Scaling 0.8 8.00 N/A 1.52 1.53 1.34

Rotation 10° 13.26 N/A 1.41 1.43 1.26
Rotation 30° 42.26 N/A 1.36 1.42 1.25

Flipping (Hor.) 1.52 N/A 0.96 0.87 0.86
Flipping (Ver.) 5.89 N/A 0.97 0.88 0.90
FRC (fps=22) N/A 0.09 0.93 0.88 0.82
FRC (fps=17) N/A 0.13 0.88 0.85 0.80

Combined attack N/A N/A 13.82 14.51 10.34

Fig. 5. Adaptive embedding and extraction process.

to the optimization algorithm in Section 4.

5.4. Robustness

This subsection compares the robustness of existing methods
with attack types including 1) H.264/AVC compression, 2)
Geometric attacks including scaling, rotation, and flipping, 3)
Frame rate conversion (FRC), and 4) Combined attack: Here,
the video is compressed with H.264/AVC (QP = 40), then the
resolution is scaled 0.5. It is also horizontally flipped and
rotated by 30 degrees, and eventually, the frame rate is altered
to 17 fps. The comparison results in terms of average bit error
ratio (BER) are given in Table 2. It can be clearly seen that
the robustness of the proposed scheme is stronger than the
existing moment and non-moment-based schemes due to the
introduction of the adaptive embedding mechanism.

6. CONCLUSION

This paper presents an adaptive video watermarking scheme
by exploring the relationship between moments and video
textures. Our scheme can adaptively select texture-rich
frames for embedding and has excellent efficiency. Experi-
mental results show that our scheme has better impercepti-
bility and stronger robustness. Also, the adaptive mechanism
mentioned in this paper can be extended to other moments.
In the future, we will introduce motion properties of videos
into adaptive video watermarking.



7. REFERENCES

[1] M. Asikuzzaman, M. J. Alam, A. J. Lambert, and
M. R. Pickering, “A blind watermarking scheme for
depth-image-based rendered 3D video using the dual-
tree complex wavelet transform,” in 2014 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 5497–
5501, IEEE, 2014.

[2] Y. Huang, B. Niu, H. Guan, and S. Zhang, “Enhanc-
ing image watermarking with adaptive embedding pa-
rameter and PSNR guarantee,” IEEE Trans. Multimedia,
vol. 21, no. 10, pp. 2447–2460, Oct. 2019.

[3] Z. Ma, W. Zhang, H. Fang, X. Dong, L. Geng, and
N. Yu, “Local geometric distortions resilient watermark-
ing scheme based on symmetry,” IEEE Trans. Circuits
Syst. Video Technol., vol. 31, no. 12, pp. 4826–4839, Dec.
2021.

[4] F. Zhang, H. Wang, L. Yang, and M. He, “Robust blind
video watermarking by constructing spread-spectrum
matrix,” in IEEE International Workshop on Information
Forensics and Security (WIFS), IEEE, 2022.

[5] Q. Liu, S. Yang, J. Liu, P. Xiong, and M. Zhou,
“A discrete wavelet transform and singular value
decomposition-based digital video watermark method,”
Appl. Math. Model., vol. 85, pp. 273–293, May. 2020.

[6] V. Holub, J. Fridrich, and T. Denemark, “Universal dis-
tortion function for steganography in an arbitrary do-
main,” EURASIP J. Inf. Secur., vol. 2014, no. 1, pp. 1–13,
Jan. 2014.

[7] L. Yang, H. Wang, Y. Zhang, J. Li, P. He, and
S. Meng, “A robust DCT-based video watermarking
scheme against recompression and synchronization at-
tacks,” in International Workshop on Digital Watermarking
(IWDW), LNCS 13180, pp. 149–162, Springer, 2022.

[8] X. Luo, Y. Li, H. Chang, C. Liu, P. Milanfar, and
F. Yang, “Dvmark: A deep multiscale framework for
video watermarking,” arXiv preprint arXiv:2104.12734,
2021.

[9] Y. Gao, X. Kang, and Y. Chen, “A robust video zero-
watermarking based on deep convolutional neural net-
work and self-organizing map in polar complex expo-
nential transform domain,” Multimed. Tools and Appl.,
vol. 80, no. 4, pp. 6019–6039, Oct. 2021.

[10] W. Huan, S. Li, Z. Qian, and X. Zhang, “Exploring sta-
ble coefficients on joint sub-bands for robust video wa-
termarking in DT CWT domain,” IEEE Trans. Circuits
Syst. Video Technol., vol. 32, no. 4, pp. 1955–1965, Apr.
2022.

[11] F. Madine, M. A. Akhaee, and N. Zarmehi, “A mul-
tiplicative video watermarking robust to H. 264/AVC
compression standard,” Signal Process. Image Commun.,
vol. 68, pp. 229–240, Spet. 2018.

[12] H. Huang, C. Yang, and W. Hsu, “A video watermark-
ing technique based on pseudo-3-D DCT and quantiza-
tion index modulation,” IEEE Trans. Inf. Forensics Secu-
rity, vol. 5, no. 4, pp. 625–637, Dec. 2010.

[13] B. Ma, L. Chang, C. Wang, J. Li, X. Wang, and Y. Shi,
“Robust image watermarking using invariant accurate
polar harmonic Fourier moments and chaotic mapping,”
Signal Process., vol. 172, p. 107544, Jul. 2020.

[14] Z. Liu and H. Wang, “A novel speech content authen-
tication algorithm based on Bessel–Fourier moments,”
Digit. Signal Process., vol. 24, pp. 197–208, Jan. 2014.

[15] G. Gao and G. Jiang, “Bessel-Fourier moment-based ro-
bust image zero-watermarking,” Multimedia Tools Appl.,
vol. 74, no. 3, pp. 841–858, Oct. 2015.

[16] Y. Chen, H. Wang, H. Wu, Z. Wu, T. Li, and A. Ma-
lik, “Adaptive video data hiding through cost assign-
ment and STCs,” IEEE Trans. Depend. and Secur., vol. 18,
no. 3, pp. 1320–1335, Jun. 2021.

[17] Y. Chen, H. Wang, K. Choo, P. He, Z. Salcic, D. Kaafar,
and X. Zhang, “A distortion drift-based cost assignment
method for adaptive video steganography in the trans-
form domain,” IEEE Trans. Depend. and Secur., vol. 19,
no. 4, pp. 2405–2420, Aug. 2022.

[18] S. Qi, Y. Zhang, C. Wang, J. Zhou, and X. Cao, “A
survey of orthogonal moments for image representation:
Theory, implementation, and evaluation,” ACM Comput.
Surv., vol. 55, no. 1, pp. 1–35, Nov. 2021.

[19] B. Xiao, J. Ma, and X. Wang, “Image analysis by
Bessel–Fourier moments,” Pattern Recognit., vol. 43,
no. 8, pp. 2620–2629, Aug. 2010.

[20] M. Asikuzzaman, M. J. Alam, A. J. Lambert, and M. R.
Pickering, “Imperceptible and robust blind video water-
marking using chrominance embedding: a set of ap-
proaches in the DT CWT domain,” IEEE Trans. Inf.
Forensics Security, vol. 9, no. 9, pp. 1502–1517, Jul.
2014.

[21] C. Wang, X. Wang, and Z. Xia, “Geometrically in-
variant image watermarking based on fast radial har-
monic Fourier moments,” Signal Process. Image Com-
mun., vol. 45, pp. 10–23, Jul. 2016.


	 Introduction
	 Motivation
	 Adaptive Video Watermarking
	 Calculation of Moments
	 Adaptive Watermark Embedding
	 Adaptive Watermark Extraction

	 Efficiency Optimization
	 EXPERIMENTAL EVALUATION
	 Experimental Setup
	 Effectiveness of Adaptive Mechanism
	 Imperceptibility and Computational Cost
	 Robustness

	 CONCLUSION
	 References

