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Abstract
The LMS algorithm is widely employed in adap-
tive systems due to its robustness, simplicity,
and reasonable performance. However, it is well
known that this algorithm suffers from a slow
convergence speed when dealing with colored
reference signals. The affine projection algo-
rithm is a good alternative in this case. This
algorithm has the peculiarity of starting from N
data vectors of the reference signal. It trans-
forms these vectors into as many data vectors
suitably normalized in energy and mutually or-
thogonal. In this work, we propose a version
of the LMS algorithm that, similar to the affine
projection algorithm, starts from N data vec-
tors of the reference signal but corrects them by
using only a scalar factor that functions as a
convergence step. Our goal is to align the be-
havior of this algorithm with the behavior of
the affine projection algorithm without signifi-
cantly increasing the computational cost of the
LMS. [1]

Algorithms update equations
NLMS:

w(n) = w(n−1)+
1

xT
L(n)xL(n)

xL(n)e
a(n). (1)

AP:

w(n) = w(n− 1) +X(n)[XT (n)X(n)]−1ea(n),
(2)

X(n) = [xL(n),xL(n − 1), · · · ,xL(n − N + 1)].
APL:

w(n) = w(n− 1) + µ(n)X(n)ea(n), (3)

with

µ(n) = µI(n) =
∥X(n)ea(n)∥2

∥XT (n)X(n)ea(n)∥2
, (4)

defines the affine-like-I (APL-I) [2].

Conclusion
In this work, it is proposed a modification of the
LMS algorithm that behaves like the AP avoid-
ing matrix inversion. It is a robust algorithm
that significantly improves the performance of
NLMS with minimal additional computational
cost.
It exhibits excellent performance for colored sig-
nals up to the projection orders where the con-
vergence behavior of the AP cannot be improved
either. Therefore, the algorithm’s performance
is significant, and the trade-off between conver-
gence speed and computational cost is, in most
cases, much superior to that of other similar al-
gorithms such as NLMS or other APL propos-
als.
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Proposed variable step-size selection
It may be inferred that an adaptive algorithm would exhibit similar behaviour to a given one if its
coefficients were very close at each algorithm iteration. Therefore, we propose the use of a variable
convergence step that minimises the squared 2-norm of the difference between the coefficients of the
exact AP algorithm, denoted as wAP (n) and shown in (2), and the approximate version, denoted as
wAPL(n) and shown in (3). This means

µ̃(n) = argminµ(n)
{
∥wAP (n)−wAPL(n)∥2

}
, (5)

or equivalently

µ̃(n) = argminµ(n)
{
∥X(n)(X(n)TX(n))−1 − µ(n)X(n))ea(n)∥2

}
, (6)

leading to

µ̃(n) =
(ea(n))Tea(n)

[X(n)ea(n)]TX(n)ea(n)
=

∥ea(n)∥2

∥ea(n)∥2Σ(n)

, (7)

where Σ(n) = X(n)TX(n). Thus, the proposed approach uses the update equation in (3), just like
the AP and the APL-I, except that the convergence step is obtained by solving the minimization
problem in (5). This approach would require LN + 3N multiplications for updating the coefficients,
which is a lower count compared to the AP and the APL-I algorithms.

Convergence discussion
It is suggested in [2] that:

0 < µ(n) < µmax(n) =
2

λmax(n)
, (8)

where λmax(n) is the maximum eigenvalue of
X(n)XT (n) (equivalently λmin(n)).

Equation (7) is a generalised Rayleigh quotient.
This ensures that the following boundaries are
satisfied

1

λmax(n)
≤ µ̃(n) {µI(n)} ≤ 1

λmin(n)
. (9)

We can only guarantee that (8) is fulfilled when
the eigenvalues of the matrix XT (n)X(n) are
not sparse.

λmax(n)/λmin(n) < 2, (10)

which stands for low colored signals and colored
ones and low projection orders.

The MSE can be approximated as

MSE ≈ σ2
v

3N− 1

2N− 1
, (11)

and MSE < 2σ2
v .
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Figure 1: Experimental and theoretical MSE ver-
sus projection order for the system identification
problem.
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Figure 2: Comparative learning curves and step-
size values for: AP, APL-I and the proposed algo-
rithm for N = 4 when the input signal is: (a) slightly
colored (γ = 0.9) and (b) highly colored (γ = 0.999).
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Figure 3: Learning curves and step-size values of
the proposed algorithm and different projection or-
ders for highly colored reference signal.


