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Abstract

n

I'he LMS algorithm is widely employed in adap-
tive systems due to its robustness, simplicity,
and reasonable performance. However, it is well
known that this algorithm suffers from a slow
convergence speed when dealing with colored
reference signals. The afline projection algo-
rithm is a good alternative in this case. This
algorithm has the peculiarity of starting from N
data vectors of the reference signal. It trans-
forms these vectors into as many data vectors
suitably normalized in energy and mutually or-
thogonal. In this work, we propose a version
of the LMS algorithm that, similar to the afline
projection algorithm, starts from /N data vec-
tors of the reference signal but corrects them by
using only a scalar factor that functions as a
convergence step. Our goal is to align the be-
havior of this algorithm with the behavior of
the affine projection algorithm without signifi-

cantly increasing the computational cost of the
LMS. [1]
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defines the affine-like-I (APL-I) [2].

Conclusion

In this work, it is proposed a modification of the
LMS algorithm that behaves like the AP avoid-
ing matrix inversion. It is a robust algorithm
that significantly improves the performance of
NLMS with minimal additional computational
cost.

It exhibits excellent performance for colored sig-
nals up to the projection orders where the con-
vergence behavior of the AP cannot be improved
either. Therefore, the algorithm’s performance
is significant, and the trade-off between conver-
gence speed and computational cost is, in most
cases, much superior to that of other similar al-
gorithms such as NLMS or other APL propos-
als.
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Proposed variable step-size select

It may be inferred that an adaptive algorithm would exhibit similar behaviour to a given one if its
coeflicients were very close at each algorithm iteration. Therefore, we propose the use of a variable
convergence step that minimises the squared 2-norm of the difference between the coefficients ot the
exact AP algorithm, denoted as w4 p(n) and shown in (2), and the approximate version, denoted as
w apr(n) and shown in (3). This means

fi(n) = argmin, i,y {[[Wap(n) — waps(n)|?}. 8
or equivalently
fi(n) = argmin, i,y {|X(n) (X(n)TX (1))~ = pu(n)X(n) ) (n)]|2} 0
leading to
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where 3(n) = X(n)? X(n). Thus, the proposed approach uses the update equation in (3), just like
the AP and the APL-I, except that the convergence step is obtained by solving the minimization
problem in (5). This approach would require LN + 3N multiplications for updating the coefficients,
which is a lower count compared to the AP and the APL-I algorithms.

Convergence dis Results

It is suggested in 2] that:

N=4, model x(n)=n(n)-0.9x(n-1)
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X (n)X*(n) (equivalently Amin(n)). £
Equation (7) is a generalised Rayleigh quotient.
This ensures that the following boundaries are
satisfied
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which stands for low colored signals and colored
ones and low projection orders.
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The MSE can be approximated as

Figure 2: Comparative learning curves and step-
(11) size values for: AP, APL-I and the proposed algo-
rithm for N = 4 when the input signal is: (a) slightly
colored (v = 0.9) and (b) highly colored (v = 0.999).
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Projection order, N Figure 3: Learning curves and step-size values of

the proposed algorithm and different projection or-

Figure 1: Experimental and theoretical MSE ver- ders for highly colored reference signal.

sus projection order for the system identification
problem.



