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Introduction
Since the weighting coefficient associated with each antenna is
a complex number, both magnitude and phase controls are re-
quired in analog implementation and they are different for dif-
ferent antennas. This will add complexity to its implementation
especially for large-scale antenna arrays and this problem can be
mitigated by phase-only control on the analog beamformer.

Here a novel design is proposed based on the work in [1],
where a phase-only control is considered so that the magnitude
of weighting coefficients can be precomputed by the designers
in advance according to their specified requirements.

Review of sub-connected hybrid beam-
former
A hybrid beamforming structure based on an F -antenna uniform
linear array (ULA) configured with the interleaved and localised
subarray architectures is shown in Figs. 1 and 2, respectively,
where the inter-element spacing is d. The whole array is grouped
into N subarrays and each subarray has Z = F

N antennas with
an adjacent spacing dn = Nd and dn = d for the interleaved and
localised subarray architectures, respectively.

Figure 1: Interleaved subarray architecture.

Figure 2: Localised subarray architecture.

The steering vector of the n-th subarray with the interleaved
and localised subarray architectures is respectively expressed as

vn(θ) = [ej2πn
d
λ sin θ, ej2π(n+N)dλ sin θ, ..., ej2π(n+N(Z−1))dλ sin θ]T ,

(1)
vn(θ) = [ej2πnZ

d
λ sin θ, ej2π(nZ+1)

d
λ sin θ, ..., ej2π((n+1)Z−1)dλ sin θ]T ,

(2)
where [·]T is the transpose operator, λ the signal wavelength.

The analog response generated by the n-th subarray is
RA,n(θ) = wH

A,nvn(θ), where [·]H represents the Hermitian
transpose and wA,n is the corresponding analog coefficient vec-
tor wA,n = [wA,n,0, wA,n,1, ..., wA,n,Z−1]

T , is the corresponding
analog coefficient vector. Through grouping the analog beam re-
sponse of N subarrays for the g-th beam into one vector

rA,g(θ) =[RA,0(θ), RA,1(θ), ..., RA,N−1(θ)]
T , (3)

where g ∈ {0, 1, ..., G − 1}, the designed beam response is for-
mulated as Rφg(θ) = wH

D,grA,g(θ), where wD,g represents the

digital coefficient vector for the g-th beam, given by wD,g =

[wD,g,0, wD,g,1, ..., wD,g,N−1]
T .

The digital pattern created by the z-th antenna of the n-th sub-
array for the g-th beam is written as RD,g,n,z(θ) = wH

D,gv̌z(θ),
with v̌z(θ) = [v0,z(θ), v1,z(θ), ..., vN−1,z(θ)]

T . By combining
the digital response of Z antennas in the n-th subarray into one
vector, given by

rD,g,n(θ) =[RD,g,n,0(θ), RD,g,n,1(θ), ..., RD,g,n,Z−1(θ)]
T ,

(4)
the g-th beam response can also be expressed as Rφg(θ) =

wH
A,nrD,g,n(θ).

Constant magnitude constraint on analog
coefficients
The sum of sidelobe responses for G beams can be approx-
imately formulated as Ksl =

∑G−1
g=0

∑
θ∈Θsideg

∣∣Rφg(θ)
∣∣2 ,

where Θsideg represents the sidelobe region of the g-th
beam. With Rφg(θ) = wH

A,nrD,g,n(θ), Ksl is changed to

KslwA
=

∑G−1
g=0

∑N−1
n=0

∑
θ∈Θsideg

wH
A,nrD,g,n(θ)rHD,g,n(θ)wA,n,

where wA,n for n ∈ {0, 1, ..., N−1} can be combined into a new
vector wA = [wT

A,0,wT
A,1, ...,wT

A,N−1]
T . Subject to the mainlobe

of each of the designed beams pointing to the desired direction,
the total sidelobe response is minimised with the following for-
mulation

min
wA

KslwA
s.j. wH

A

 w̃H
D,0,0c0,0 ··· w̃H

D,G−1,0cG−1,0

w̃H
D,0,1c0,1 ··· w̃H

D,G−1,1cG−1,1
... . . . ...

w̃H
D,0,N−1c0,N−1 ··· w̃H

D,G−1,N−1cG−1,N−1

 = q,

(5)
with

w̃D,g,n = wD,g,nIZ, cg,n =
∑

θ∈Θmaing

vn(θ), (6)

where IZ and q are the Z × Z identity matrix and 1×G all-one
vector, respectively, and Θmaing

denotes the mainlobe direction
of the g-th beam.

However, the magnitudes of the analog coefficients obtained
by (5) are distinct, and an individual feed circuit for each antenna
is required for analog beamforming. For phase-only control,
a new constraint is given by |wA| = x = [χ0, χ1, ..., χF−1]

T ,
where | · | is the element-wise absolute value operator.

The new formulation to optimise the weighting coefficients is
given by

min
wA,ψ

KslwA
subject to the constraint in (5),

ℜ
{

wA ◦ e−jψ
}
= x.

(7)

Next, when wA is known, the optimum digital coefficient vec-
tor can be calculated as follows.

By substituting Rφg(θ) = wH
D,grA,g(θ) into Ksl, Ksl can be

rewritten as

KslwD
=

G−1∑
g=0

N−1∑
n=0

∑
θ∈Θsideg

wH
D,grA,g(θ)rHA,g(θ)wD,g, (8)

where wD,g for g ∈ {0, 1, ..., G − 1} can be combined into a
vector wD = [wT

D,0,wT
D,1, ...,wT

D,G−1]
T .

Given the obtained wA in (7), the formulation to find the digital
coefficient vector wD is given by

min
wD

KslwD
s.j. BHwD = qT , with (9)

B =


wH
A t̂0,0 0 ··· 0
... . . . . . . ...

wH
A t̂0,N−1

. . . 0 0
... wH

A t̂1,0 . . . ...
... . . . . . . ...
0 ··· ··· wH

A t̂G−1,N−1

 ,

t̂g,0=

 cg,0
0Z×1...
0Z×1

,
...

t̂g,N−1=

 0Z×1
0Z×1...cg,N−1

,
(10)

where 0Z×1 in (10) is the Z × 1 all-zero vector.
Alternating optimisation of wD, wA and ψ is as follows:

(1) First, via initialising wD randomly, wA is computed by (5).

(2) Based on the optimum value for wA computed in last step,
the angle ψ is computed by ψ = ∠wA.

(3) With the ψ in step (2), the new wA can be computed by (7).

(4) Repeat steps (2) and (3) until convergence.

(5) Based on the optimum value for wA computed in step (4),
the optimum value for wD is found by (9).

(6) Given the value of wD in step (5), the new wA can be updated
by steps (2), (3) and (4).

(7) Repeat steps (2) - (6) until convergence.

Design examples
The two beam directions are φ0 = −30◦ and φ1 = 20◦ and
the sidelobe regions are sinΘs0 ∈ [−1,−0.55] ∪ [−0.45, 1] and
sinΘs1 ∈ [−1, 0.29] ∪ [0.39, 1].

Moreover, F = 2Z = 50 antennas are considered and the an-
tenna spacing is d = 0.3λ. Apart from the example generated by
(5), one special case is considered, i.e., χf = 1/48 ≈ 0.0208,
where f ∈ {0, 1, ..., 49}, for the weighting coefficients with
equal-magnitude constraint.

Overall results obtained by the proposed design (7) with dif-
ferent subarray architectures are presented in Figs. 3 and 4, re-
spectively.
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Figure 3: Resultant responses of the 0th beam generated by design (7).
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Figure 4: Resultant responses of the 1st beam generated by design (7).

The mean value for the total sidelobe responses is calculated
by R̄side = 1

GYs

∑G−1
g=0

∑Ys−1
j=0,θj∈Θsideg

∣∣Rφg(θj)
∣∣2 and the nor-

malised variance for the magnitudes of wA is defined as δ|wA| =

1
F

∑F−1
f=0

||wA(f )|−|w̄A||2

|w̄A|2
, where |w̄A| = 1

F

∑F−1
f=0 |wA(f )|. The

comparison for different designs is summarised in Table 1.

Table 1: Summary of performance metrics for different designs.

Structure R̄side(dB) δ|wA| t(s)

Design (5)
Interleaved -25.12 0.3764 8.66
Localised -19.79 0.9535 2.28

Design (7)
Interleaved -22.90 1.189× 10−11 78.71
Localised -14.50 7.345× 10−4 44.94

For each of the two designs, although the computational time
for the design based on the interleaved architecture is longer
than that of the design with the localised one, it gives a narrower
beamwidth for each of the designed beams with lower sidelobe
responses and variance on analog weighting magnitudes.

Conclusions
A constant magnitude constraint is enforced in multi-beam mul-
tiplexing design based on a hybrid massive MIMO beamforming
structure so that a phase-only control is achieved by maintaining
the circuit gain at a fixed value. In addition, the analog magni-
tudes of the weighting coefficients for all antennas can be prede-
termined in advance to meet specific application requirements.
Although the constraint to limit the magnitude of the analog co-
efficients is non-convex, it can be transformed to a convex one
through an iterative phase compensation method.
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