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ABSTRACT

To date, research on relation mining has typically focused
on analyzing explicit relationships between entities, while
ignoring the underlying connections between entities, known
as implicit relationships. Exploring implicit relationships
can reveal more about social dynamics and potential rela-
tionships in heterogeneous social networks to better explain
complex social behaviors. The research presented in this
paper explores implicit relationships discovery methods in
the context of heterogeneous social networks. First, the cre-
ation of a novel implicit relationships dataset is described,
namely HIMdata. Next, a framework for discovering implicit
relationships in heterogeneous social networks is introduced.
The proposed framework, HIM, innovatively integrates node
attributes information and network structure information with
graph convolutional networks for discovery of implicit rela-
tionships. Finally, HIM is evaluated on two different types of
networks, achieving state-of-the-art performance on implicit
relationship discovery tasks. The source codes are released at
https://github.com/myjpgit/HIM.git.

Index Terms— Heterogeneous social networks, implicit
relationship discovery, graph convolutional networks.

1. INTRODUCTION

Recently, relation mining is widely used for a broad range
of applications, including user analysis [1, 2], recommenda-
tion [3,4] and semantic similarity search [5]. Current research
on relation mining has primarily focused on exploring explicit
relationships between entities. However, less work has ex-
plored the hidden relations that may exist beneath the explicit
connections in social networks [6—8]. These non-explicit, hid-
den relationships are also known as implicit relationships.
Implicit relationships refer to implied relationships be-
tween entities in a social network. They can reflect the under-
lying reason for entities to establish explicit connections. For
example, in a scientific collaboration network where collabo-
rations between scholars are explicit relationships, the under-
lying reason for their collaboration may be that one scholar
is the advisor of the other. In the context of the social net-
work Weibo, the mutual following relationship between users

is considered an explicit relationship. However, it may be
that two users follow each other on Weibo because they are in
the same city. The advisor-advisee relationship in this collab-
oration network and the same-city relationship in the Weibo
following network could be regarded as implicit relationships.
Implicit relationships are essential for understanding the po-
tential connections between entities, revealing the formation
rules of social networks, and obtaining the behavioral charac-
teristics of entities within social networks.

Despite the importance of both explicit and implicit re-
lationships in understanding social network dynamics [8, 9],
the extraction of implicit relationships is more complicated
than extracting explicit relationships, because implicit rela-
tionships may not have real links/edges. Thus, to accurately
model the complex social behaviors of entities in social net-
works, relation mining methods must be developed that can
accurately model both explicit and implicit relationships.

This paper explores methods for mining implicit relation-
ships from social network data. First, a definition of implicit
relationships is provided. Next, a novel implicit relationships
dataset, known as HIMdata, is introduced to facilitate the in-
vestigation of implicit relationships from social networks. To
support the discovery of implicit relationships in heteroge-
neous social networks, the HIM framework is proposed which
consists of three major components, described as follows. In
the first component, node attribute features are aggregated by
graph neural networks, and the link attribute embeddings are
calculated by the common neighbors (CN) index. In the sec-
ond component, Graph Convolutional Networks (GCN) are
used to model relations in the data. Finally, the third com-
ponent predicts the implicit relationships for each candidate
edge. Our contributions can be summarized as follows:

(1) HIMdata. We create a novel implicit relationships
dataset, namely HIMdata. It consists of data from two distinct
social networks: Same-City Relationship (from Weibo) and
Advisor-Advisee Relationship (from Microsoft Academic
Graph). HIMdata will be released publicly for research.

(2) Efficient framework. We propose a novel implicit re-
lationships discovery framework, namely HIM. HIM aggre-
gates node attributes and network structure information from
nodes’ heterogeneous neighbors to predict implicit relation-
ships in social networks.
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Fig. 1. The overall framework of our proposed HIM.

(3) Flexible and superior method. The ability of HIM to
aggregate network attributes makes it applicable to multiple
types of networks and outperforms existing SOTA methods.

2. DEFINITION OF IMPLICIT RELATIONSHIPS

Explicit relationships are represented by real edges between
entities in networks. In contrast, implicit relationships refer to
inconspicuous relationships between entities in networks that
are not clear on the surface but reflect the underlying reasons
for entities to establish explicit connections. These reasons
can include shared interests, same location, work colleagues,
shared purpose, and other social connections.

Some researchers have noted the implicit relationships
that are hidden in social networks [10—12], but they have only
considered simple implicit relationships between entities in a
social network, such as relationships based on co-occurrence
or common interests. However, the nature of implicit rela-
tionships is more complicated in many heterogeneous social
network relationships. Thus, we propose a broader definition
of implicit relationships, which is defined as:

Implicit relationships. Implicit relationships refer to the
potential relationships between entities in the heterogeneous
network, largely reflecting the cause of the explicit relation-
ships. In a heterogeneous network G = (V. E, ¢, 1), where
V and E denote the sets of nodes and edges, eachnode v € V'
and each edge e € I correspond to one or more type mapping
functions ¢(v) : v — T and ¢(e) : ¢ = R, where T'and R
denotes the node and edge types, |T'| + | R| > 2. The implicit
relationship R™ can be inferred by entity features F, exter-
nal knowledge K, and explicit edges E. Implicit relationship
R™ can refer to an implicit edge type that is not explicitly
displayed in heterogeneous network G.

3. THE HIM FRAMEWORK

This section elaborates on our proposed HIM framework,
which is shown in Fig. 1. The following subsections provide
a detailed overview of each module respectively.

3.1. Network Attributes Aggregation

To capture both node attributes and network link attributes,
HIM takes advantage of the HetGNN model [13] and con-
nected node similarity indices to fuse multiple types of infor-
mation contained in different nodes.

First, inspired by previous work [14], Bi-LSTM is used
as an aggregator to combine the heterogeneous neighbors’ at-
tributes of nodes under a specific relationship. We denote the
t-type sampled neighbor set of v € V obtained by RWR (Ran-
dom Walk with Restart) as N;(v), and use a neural network
J to aggregate content embeddings of v/ € Ny(v):

S venue [ISTM {z(v')} & LSTM {()}
[Ne(v)]

where ¢t € T denotes a specific node type in the heteroge-
neous network, f¢(v) is the type-based aggregated attributes
representation of node v.

The previous step generates the | 1| aggregated attributes
representation for node v. Since different types of neighbors
will make different contributions to the attributes representa-
tion of node v, the attention mechanism is used. Thus, the
attributes representation of node v is defined as:
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where h, is the attributes representation of node v that ag-
gregates different types of neighbors, a*>* denotes the impor-
tance of different attributes representation, and * denotes v or
t. If all nodes are considered and M; denotes the link matrix,
the final attributes matrix H of nodes can be expressed as:
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where W, is weight matrix and h, denotes the attributes rep-
resentation of node v € V' that aggregates t-type neighbors.

Second, the similarity of two connected nodes is utilized
to define the attributes representing links or connections (i.e.,
network structure information). The common neighbors (CN)
approach [15] is used as the similarity index. After we convert
the similarity of two connected nodes into the link attributes
New, v, of edge ey, »;, the link attributes weight \; ; for edge
€y, v, 18 calculated as:

)\ivj = U(WW : ’r]eui,vj + bn) (5)

where W, is the weight matrix and b,; is the bias vector. Fi-
nally, the adjacency matrices of positive samples A, and neg-
ative samples A,, are multiplied by the link attributes weight
matrix Ly as part of the input information of the GCN model.

3.2. Graph Convolutional Network

After processing the node attributes and network link at-
tributes, relations are modelled by using graph convolutional
networks. In order to make full use of the information of
neighbor nodes and thereby improve the effectiveness of in-
formation dissemination and conversion, we lead into the
first-order neighbors of the target node in GCN model to
extend the receptive field of a single graph convolutional
layer. Taking the relation type into account, the information
dissemination method of each layer can be expressed as:

Wit = ReLU | > A;hlw) +
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where IV} is the set of vis neighbors under the relation type
r e R A} = D
matrix of node vj, D is the diagonal degree matrix of A;,
hl € R4 is the feature of node v; in the I-th hidden layer.

2A D z is the normalized adjacency

3.3. Implicit Relationship Prediction

After the K layer GCN, the final representation of v; is com-
puted as z; = hf. Next, we utilize the traditional method of
link prediction to predict unknown links in G. Specifically,
we use a scoring function F(v,, R"™, v,) to predict the score
of candidate links (vs,v,):
F(vg, R"™ v,) = 2T Rz, @)
Finally, the probability F(vs, R"™,v,) of unlabeled
triplet (vs, R"™, v, ) existing under R"™ is defined as:

0,1)  @®)

where b is a bias vector, and ¢(x) = 1/(1 + exp(—x)) is a
sigmoid function which expresses the probability prediction
of whether the new triplet (vs, R'™, v,) is correct or not.

.7:"(113, R™ v,) = ¢ (]-"(U(S,Rim,vo) + b) €

In the training process, we use the cross-entropy function
as the loss function to train the parameters of the model. Neg-
ative sampling is used to accelerate the convergence of the
method. If E denotes the set of edges, the loss function Ly,
for HIM can be defined as follows:

1
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where v/ is a random node which is not connected with v,,
.7-"5 « represents ]—'(vs, R™ v,), d is defined as:

_ 17 Zf (US7RiMl7UO) € Sp
0= { 0, if (vs, Ri™ o)) € S, (10)

where S,, is negative samples, which is composed of edges
generated by negative sampling based on positive samples 5,

4. EXPERIMENTS

4.1. Dataset and Baselines

With the goal of creating a large-scale implicit relationships
dataset to support research on implicit relationships discov-
ery, data was collected from a range of sources including on-
line social media (Weibo) and Microsoft Academic Graph.
The dataset is titled HIMdata and can be downloaded from
https://github.com/myjpgit/HIMdata.git.

Same-City Relationship. Weibo was crawled for users’
information to construct a heterogeneous network based on
the mutual following relationship between users. The mu-
tual following relationship is the explicit relationship, which
can be obtained by filtering according to the users’ unidirec-
tional following information. The same-city relationship here
means that the geographic locations in the personal informa-
tion of two users are in the same city, which is considered as
an implicit relationship. We successfully screened out 34,438
users’ mutual following relationship pairs, including 10,195
users and 16,428 same-city relationship pairs.

Advisor-Advisee Relationship. Microsoft Academic
Graph, which contains information about scholars and publi-
cations, was used to construct an academic co-author hetero-
geneous network. Here, the co-author relationship between
two scholars is an explicit relationship. The reason for the
collaboration of the two scholars may be that one scholar is
the advisor of the other. Thus, the advisor-advisee relation-
ship is considered as an implicit relationship. We successfully
obtained 8282 co-authors relationship pairs, including 7872
scholars and 2787 advisor-advisee relationship pairs.

We compare the HIM with following state-of-the-art net-
work representation learning methods to evaluate the perfor-
mance of HIM, including GATNE [16], GRCN [17], HGT
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Table 1. Performance Comparison w.r.t. AUC and F1 with
Different Training Ratios on Same-City Relationship.

Table 2. Performance Comparison w.r.t. AUC and F1 with
Different Training Ratios on Advisor-Advisee Relationship.

Criteria AUC F1 score Criteria AUC F1 score
Tr(%) 30% 50% 70% | 30% 50% @ 40% Tr(%) 30% 50% 70% | 30% 50% @ 40%
GATNE [16] | 0.862 0.866 0.872 | 0.794 0.800 0.813 GATNE [16] | 0.617 0.628 0.631 | 0.543 0.559 0.567
GRCN [17] 0.817 0.828 0.832 | 0.676 0.706 0.709 GRCN [17] 0.572 0.576 0.580 | 0.496 0.507 0.509
HGT [18] 0.847 0.858 0.862 | 0.766 0.776 0.779 HGT [18] 0.628 0.634 0.640 | 0.565 0.571 0.576
GEN [19] 0.808 0.813 0.822 | 0.672 0.680 0.698 GEN [19] 0.648 0.653 0.652 | 0.582 0.593 0.589
SLICE [20] 0.924 0922 0.933 | 0.853 0.857 0.876 SLICE [20] 0.686 0.691 0.695 | 0.611 0.618 0.622
Shifu2 [9] 0.824 0.835 0.834 | 0.753 0.769 0.763 Shifu2 [9] 0.714 0.726 0.733 | 0.673 0.692 0.706
MHGCN [21] | 0.967 0970 0975 | 0924 0.934 0.949 MHGCN [21] | 0.719 0.725 0.731 | 0.685 0.695 0.712
HIM(Ours) 0973 0975 0979 | 0.926 0.935 0.943 HIM(Ours) 0.722 0.729 0.735 | 0.683 0.702 0.713

[18], GEN [19], SLICE [20], Shifu2 [9] and MHGCN [21].
Furthermore, we adopt the average of the Area Under Curve
(AUC) and F1 score obtained from 10 independent training
cycles to evaluate the performance of different methods.

4.2. Experimental Results and Analysis

As demonstrated in Table 1 and Table 2, our method, HIM,
achieves the best performance on the two evaluation criteria,
even when the training set is relatively small, which proves
the effectiveness of our method in mining implicit relation-
ships in heterogeneous networks. In addition, compared with
GATNE, SLICE, MHGCN, and HIM, the remaining network
representation learning methods have not achieved compet-
itive performance, because methods designed for link pre-
diction and those designed for other downstream tasks have
different focuses on aggregating network information, which
leads to differences in the emphasized information.

Furthermore, Shifu2, which is specially designed for
mining advisor-Advisee implicit relationship, shows excel-
lent performance in Advisor-Advisee Relationship dataset,
but poor performance in Same-City Relationship dataset.
These results prove that Shifu2 has strong domain pertinence,
while our proposed HIM stands out by identifying multiple
implicit relationships instead of focusing on a single type,
demonstrating its superiority in this task.

We further compare the results of HIM and its variables,
namely HIM w/o HA#t and HIM w/o LAtt. HIM w/o HAtt and
HIM w/o LA#t denote the framework without heterogeneous
attributes aggregation (i.e., using X, instead of h; in equa-
tion (4)) and without link attributes weight (i.e., without us-
ing link attributes weight ); ;). The experimental results are
shown in Table 3. When the results are considered overall,
it is clear that HIM achieves the best performance. However,
it is also noted that HIM does not perform better than HIM
w/o HAtt and HIM w/o LAtt on all datasets. One of the pos-
sible reasons for this is that different information is needed
to discover implicit relationships in different networks. For
some networks, node attributes contribute more to the per-
formance of the target task. The excessive extraction of net-

Table 3. Performance of HIM w.r.t. AUC and F1 with Differ-
ent Aggregation Attributes on Each Dataset.

Dataset Same-City Advisor-Advisee
Relationship Relationship
Criteria AUC F1 Score AUC F1 Score
HIM w/o HA#t | 0.974 0.928 0.717 0.680
HIM w/o LA#t | 0.967 0.917 0.751 0.722
HIM 0.979 0.943 0.735 0.713

work structure attributes will reduce its performance, while
for other networks, the opposite can be true.

We conducted additional experiments on “Terrorist At-
tack” dataset to demonstrate the broader applicability of HIM.
Due to page limitations, these experimental results were not
included in the paper. For details about the dataset, its con-
struction methodology, and comprehensive experimental re-
sults, please refer to https://github.com/myjpgit/
HIM/blob/master/Supplementary.pdf

5. CONCLUSION

In this paper, we create a large-scale implicit relationships
dataset, namely HIMdata, for investigating hidden connec-
tions between entities in social networks. Further, the HIM
framework is proposed, which innovatively integrates node
attributes information and network structure information with
Graph Convolutional Networks for implicit relationships dis-
covery. The proposed HIM framework has important signif-
icance for many real-world applications. For example, the
mining of same-city relationships could help same-city busi-
ness recommendation applications. In addition, understand-
ing the implicit relationships in social networks is very im-
portant for the analysis of the formation and development of
social networks and the analysis of social users’ behavior.
Acknowledgement This work was supported in part by the
National Natural Science Foundation of China under Grant
62072073, Grant 61906028, Grant 62076046, 62106034 and
in part by the Dalian Innovation Fund 2021JJ12GXO016.


https://github.com/myjpgit/HIM/blob/master/Supplementary.pdf
https://github.com/myjpgit/HIM/blob/master/Supplementary.pdf

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

6. REFERENCES

C. Mi, X. Ruan, and L. Xiao, “Microblog sentiment
analysis using user similarity and interaction-based so-
cial relations,” Int. J. Web Serv. Res., vol. 17, no. 3, pp.
39-55, 2020.

J. H. Chen and H. T. Chen, “The role of social network
sites on the relationship between game users and devel-
opers: An evolutionary game analysis of virtual goods,”
Inf. Technol. Manag., vol. 22, no. 2, pp. 67-81, 2021.

C. Wang, W. Ma, M. Zhang, C. Chen, Y. Liu, and S. Ma,
“Toward dynamic user intention: Temporal evolution-
ary effects of item rela-tions in sequential recommenda-
tion,” ACM Trans. Inf. Syst., vol. 39, no. 2, pp. 16:1-
16:33, 2021.

Z.Zhao, Y. Yang, C. Li, and L. Nie, “Guessuneed: Rec-
ommending courses via neural attention network and
course prerequisite relation embeddings,” ACM Trans.
Multim. Comput. Commun. Appl., vol. 16, no. 4, pp.
132:1-132:17, 2021.

J. N. Chiang, Y. Peng, H. Lu, K. J. Holyoak, and M. M.
Monti, “Distributed code for semantic relations predicts
neural similarity during analogical reasoning,” J. Cogn.
Neurosci., vol. 33, no. 3, pp. 377-389, 2021.

M. R. Hamedani, I. Ali, J. Hong, and S. W. Kim,
“Trustrec: An effective approach to exploit implicit trust
and distrust rela-tionships along with explicitones for
accurate recommendations,” Comput. Sci. Inf. Syst., vol.
18, no. 1, pp. 93-114, 2021.

B. Xu, B. Chen, T. Zhang, J. Liu, C. Liao, and Z. Zhao,
“Mining multivariate implicit relationships in academic
networks,” in WWW’ 22, 2022, pp. 1148-1156.

J. Liu, F. Xia, J. Ren, B. Xu, G. Pang, and L. Chi,
“Mirror: Mining implicit relationships via structure-
enhanced graph convolutional networks,” ACM Trans.
Knowl. Discov. Data, vol. 17, no. 4, pp. 55:1-55:24,
2023.

J. Liu, F. Xia, L. Wang, B. Xu, X. Kong, H. Tong, and
I. King, “Shifu2: A network representation learning
based model for advisor-advisee relationship mining,”
IEEE Trans. Knowl. Data Eng., vol. 33, no. 4, pp. 1763—
1777, 2021.

M. Song, N. G. Han, Y. H. Kim, Y. Ding, and T. Cham-
bers, “Discovering implicit entity relation with the gene-
citation-gene network,” PLoS ONE, vol. 8, no. 12, pp.
e84639, 2013.

W. Zhou, W. Duan, and S. Piramuthu, “A social network
matrix for implicit and explicit social network plates,”
Decis. Support Syst., vol. 68, pp. 89-97, 2014.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

A. Spitz, S. Almasian, and M. Gertz, “Evelin: Explo-
ration of event and entity links in implicit networks,” in
WWW’ 17,2017, pp. 273-2717.

C. Zhang, D. Song, C. Huang, A. Swami, and N. V.
Chawla, “Heterogeneous graph neural network,” in
KDD’ 19, 2019, pp. 793-803.

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” in NIPS’ 17,
2017, pp. 1024-1034.

A. L. Buchsbaum, R. Giancarlo, and J. R. West-
brook, “On finding common neighborhoods in massive
graphs,” Theor. Comput. Sci., vol. 299, no. 1-3, pp. 707-
718, 2003.

Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and
J. Tange, “Representation learning for attributed mul-
tiplex heterogeneous network,” in KDD’ 19, 2019, pp.
1358-1368.

D. Yu, R. Zhang, Z. Jiang, Y. Wu, and Y. Yang, “Graph-
revised convolutional network,” in ECML/PKDD’ 20,
2020, pp. 378-393.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous
graph transformer,” in WWW’ 20, 2020, pp. 2704-2710.

R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and
X. Xie, “Graph structure estimation neural networks,”
in WWW’ 21, 2021, pp. 342-353.

P. Wang, K. Agarwal, C. Ham, S. Choudhury, and C. K.
Reddy, “Self-supervised learning of contextual embed-
dings for link prediction in heterogeneous networks,” in
WWW’ 21,2021, pp. 2946-2957.

P. Yu, C. Fu, Y. Yu, C. Huang, Z. Zhao, and
J. Dong, “Multiplex heterogeneous graph convolutional
network,” in KDD’ 22, 2022, pp. 2377-2387.



	 Introduction
	 Definition of Implicit Relationships
	 The HIM Framework
	 Network Attributes Aggregation
	 Graph Convolutional Network
	 Implicit Relationship Prediction

	 Experiments
	 Dataset and Baselines
	 Experimental Results and Analysis

	 Conclusion
	 References

