CONCSS: Contrastive-based Context Comprehension for Dialogueappropriate Prosody in Conversational Speech Synthesis

ICASS 2024 KOREA

Yayue Deng¹, Jinlong Xue¹, Yukang Jia³, Qifei Li¹, Yichen Han¹, Fengping Wang¹, Yingming Gao¹, Dengfeng Ke², Ya Li¹ ¹Beijing University of Posts and Telecommunications, Beijing, China ²Beijing Language and Culture University, Beijing, China ³Perfect World Co., Ltd, Beijing, China

Conversational Speech Synthesis (CSS)

CSS Task Definition:

Given history dialogue, the CSS task focuses on improving the model's context understanding capability and generating audio with context-appropriate

Motivation

Limitation of Previous Works:

- > Previous CSS approaches mostly rely on jointly training synthesis model and context encoder using the mel-reconstruction loss.
- > Without explicit constraints, is this output vector of the context encoder sufficiently indicative of underlying context variations?

Contribution:

- > A novel conversational speech synthesis framework CONCSS > A novel pretext task specific to CSS

Comprehensively evaluate models on their ability to produce context-sensitive vectors and dialogue-appropriate prosody

CONCSS Framework Overview

Fig.1. Illustration of our proposed CONtrastive-based Conversational Speech Synthesis (CONCSS).

Method

CONCSS = VITS+Four Enhancements :

> Leveraging an innovative pretext task to create contextdependent pseudo-labels

 $D(h_i + h_i^p) < D(h_i + h_i^n)$

 \succ Employ triplet loss with a hard negative sampling strategy

 $L(h_i^a, h_i^p, h_i^n) = max \{D(h_i^a - h_i^p) - D(h_i^a - h_i^n) + m, 0\}$

> An Acoustic and Textual Context Encoder

$$\int L_{text}^{k} = L(H_{text}^{a}, H_{text}^{p}, H_{text}^{n})$$

Experiments and Conclusion

	Table 1. Subjective evaluation (context-appropriate prosody and naturalness) for different models.						
	Model	GRU-based	M2CTTS	S1	S2	S3	S4
	MOS (†)	$ 3.396 \pm 0.107$	$ 3.438 \pm 0.104$	$ 3.528 \pm 0.097$	$ 3.708 \pm 0.108$	$3 3.838 \pm 0.110$	$\mid 3.967 \pm 0.120$
Models GRU-based vs. M2CTTS M2CTTS vs. S1 S1 vs. S2 S1 vs. S3 S2 vs. S3 S3 vs. S4 GRU-based vs. S4 M2CTTS vs. S4							
CMO	DS (\uparrow) 0	.200	0.388	0.796 0.983	0.492	0.325 1.84	6 1.788

 Table 2. Objective evaluation metrics primarily focus on the
 context-sensitive prosody. The Real context type uses the correct context for the current synthesized sentence, whereas the Fake type randomly selects from unrelated dialogues.

Method	Set	Туре	Mel Loss (\downarrow)	Log F0 RMSE (\downarrow)	MCD (\downarrow)
CPU ba	GRU-based		3.599	0.2949 ± 0.1192	5.3590
UKU-Das			3.683	0.3001 ± 0.1164	5.3781
MOCTT	M2CTTS		3.579	0.2936 ± 0.1014	5.3236
MIZCTT			3.596	0.3036 ± 0.1277	5.3882
		Real	3.609	0.2911 ± 0.1099	5.3382
		Fake	3.626	0.3203 ± 0.1093	5.4923
	S2 E	Real	3.556	0.2906 ± 0.1047	5.2883
CONCSS		Fake	3.638	0.3311 ± 0.1417	5.5157
CONCSS	62	Real	3.530	0.2821 ± 0.0960	5.2748

> Utilize an autoregressive prosodic modeling (APM) module with a pre-trained prosodic language model

0		Fake	3.715	0.3272 ± 0.1455	5.6923
S	54	Real	3.525	0.2803 ± 0.0961	5.2634
0	94	Fake	3.649	0.3252 ± 0.1097	5.6041

 Table 3. Subjective evaluation between different context types.

Model	MOS	CMOS (†)	
Widdei	Real	Fake	Real vs Fake
GRU-based	3.442 ± 0.111	3.388 ± 0.102	0.325
M2CTTS	3.504 ± 0.100	3.312 ± 0.112	0.445
S1	3.638 ± 0.091	3.250 ± 0.116	0.492
S2	3.796 ± 0.076	3.229 ± 0.101	0.529
S 3	3.958 ± 0.074	3.308 ± 0.100	0.804

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) (No.62271083), the Key Project of the National Language Commission (No.ZDI145-81), the Fundamental Research Funds for the Central Universities (No.2023RC73, No.2023RC13).

References

[1] Jaehyeon Kim, Jungil Kong, and Juhee Son, "Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech," in ICML. 2021, vol. 139 of Proceedings of Machine Learning Research, pp. 5530–5540, PMLR [2] Jinlong Xue, Yayue Deng, Fengping Wang, Ya Li, Yingming Gao, Jianhua Tao, Jianqing Sun, and Jiaen Liang, "M2-ctts: End-to-end multi-scale multi-modal conversational text_x0002_to-speech synthesis," in ICASSP 2023-2023 IEEE Interna_x0002_tional Conference on Acoustics, Speech and Signal Processing(ICASSP). IEEE, 2023, pp. 1–5. [3] Haohan Guo, Shaofei Zhang, Frank K Soong, Lei He, and Lei Xie, "Conversational end-to-end tts for voice agents," in 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021, pp. 403–409.

Contact Information

Yayue Deng Email: yayue.deng@bupt.edu.cn Phone: +86 18810956816

