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ABSTRACT

The prominence of a spoken word is the degree to which an average
native listener perceives the word as salient or emphasized relative to
its context. Speech prominence estimation is the process of assign-
ing a numeric value to the prominence of each word in an utterance.
These prominence labels are useful for linguistic analysis, as well as
training automated systems to perform emphasis-controlled text-to-
speech or emotion recognition. Manually annotating prominence is
time-consuming and expensive, which motivates the development of
automated methods for speech prominence estimation. However, de-
veloping such an automated system using machine-learning methods
requires human-annotated training data. Using our system for ac-
quiring such human annotations, we collect and open-source crowd-
sourced annotations of a portion of the LibriTTS dataset. We use
these annotations as ground truth to train a neural speech prominence
estimator that generalizes to unseen speakers, datasets, and speaking
styles. We investigate design decisions for neural prominence esti-
mation as well as how neural prominence estimation improves as a
function of two key factors of annotation cost: dataset size and the
number of annotations per utterance.
Index Terms: emphasis, paralinguistics, prominence, prosody

1. INTRODUCTION

Prominent or emphasized words are those that stand out to listen-
ers as salient or perceptually highlighted relative to their context.
Human perception of prominence in English (and many other lan-
guages) is influenced by acoustic factors related to prosody (i.e., the
pitch, rhythm, and loudness of speech) as well as information struc-
ture [1, 2]. Information structure is the contribution a word makes to
the shared knowledge of the speaker and hearer, based on its status
as conveying information that is given, new, or contrastive relative to
prior discourse. Prominence is a multi-dimensional perceptual rela-
tion between words in a phrase. However, performing annotations in
this multi-dimensional space (e.g., separately annotating structural
and semantic factors), as opposed to a scalar, is cost-prohibitive.

In this paper, we represent the emphasis status of each word us-
ing a binary label (zero or one), and its prominence as a scalar real
value between zero and one, such that the emphasis status is a bi-
nary thresholding of scalar prominence, and scalar prominence is a
weighted norm of the latent multi-dimensional prominence. From
a statistical viewpoint, we consider the prominence m of word i as
a Bernoulli distribution parameter and the emphasis e as the corre-
sponding Bernoulli random variable such that the probability that
word i is perceived as emphasized is p(ei = 1) = mi.

Emphasis annotation is the process of labeling each word with
a binary indicator of emphasis, a task that can be performed by
non-expert native speakers. Given multiple annotations of the same
speech (e.g., from multiple human annotators), scalar prominence
values can be obtained by averaging over the binary emphasis anno-
tations for each word. Emphasis and prominence labels are used in

downstream tasks such as emphasis-controlled TTS [3, 4, 5], emo-
tion recognition [6], and text summarization [7].

Because human emphasis annotation can be costly and time-
consuming, prior works attempted to replace these annotations with
one of three types of automated methods: (1) heuristic, rule-based
methods based on acoustic features [8, 9, 10], (2) machine learning
methods that train on the output of such a rule-based system [11,
12, 13], and (3) machine learning methods that train on ground-
truth values prominence derived from human annotation [14, 15, 16,
17]. Heuristic, rule-based systems struggle to capture the complex-
ity of high-dimensional perceptual attributes and can require signifi-
cant manual tuning to generalize to new data distributions. Machine
learning methods that learn from the output of rule-based systems
might perform useful interpolation and denoising, but otherwise in-
herit the same drawbacks. Methods that learn from human anno-
tation avoid these drawbacks, but require human-annotated data for
training. All three approaches necessitate benchmarking on human
annotations, making human annotation unavoidable.

Vaidya et al. [17] is most similar to our method of perform-
ing neural prominence estimation using human annotations. They
use a closed-source dataset of 41k English words spoken by 10-14
year old students in Mumbai and annotated by 26 university stu-
dents to have seven annotations per word. Transcripts come from
34 short stories of 100 words, each selected to have a single refer-
ence prosody for fluency assessment purposes [18]. In other words,
text was selected to make placement of emphasis in the dataset more
predictable. Vaidya et al. train a CRNN-based model to infer promi-
nence from ground truth acoustic features with a Pearson correlation
of 0.721 on heldout recordings of unseen non-native child speak-
ers. They demonstrate further performance using human-annotated
boundary features, language-dependent lexical features, and curated
selection of prosodic features. Lack of open source data, models,
and input features makes exact replication impossible. Instead, we
perform ablations of what we consider to be key architectural deci-
sions and note the additional utility of the input features they have
explored.

Unique to our work, we train on scalable crowdsourced anno-
tations, generalize to unseen speaking styles and datasets of adult
speakers, produce open-source annotations suitable for training and
benchmarking, develop open-source tools for crowdsourced speech
annotation, and uncover novel guidelines for how the performance
of neural prominence estimation trained on crowdsourced annota-
tions scales with dataset size and annotator redundancy—two pri-
mary factors in the overall cost of emphasis annotation. Our main
contributions in this paper are as follows.

• (Contribution 1) We develop a neural speech prominence es-
timation system trained on crowdsourced human emphasis
annotations that produces accurate prominence estimations
on unseen speakers, datasets, and speaking styles (Section 4).

• (Contribution 2) We produce a CC-BY-4.0 licensed dataset
of emphasis annotations of one eighth of the



Fig. 1. Crowdsourced human emphasis annotation interface | Annotators listen to a speech recording and click to boldface the words they
perceive as emphasized.

train-clean-100 partition of LibriTTS (Section 3).

• (Contribution 3) We develop an open-source system for
performing crowdsourced word-level annotations of, e.g.,
falsetto, vocal fry, and emphasis (Section 2).

• (Contribution 4) We demonstrate how the amount of train-
ing data and the number of annotators per speech excerpt im-
pact estimation performance, providing guidelines for cost-
effective annotation (Section 6).

We release our code and annotation methods as emphases, a MIT-
licensed, pip-installable Python module for training, evaluating, and
performing both automatic and human annotation of emphasis. Our
code and dataset are available on our project website.1

2. CROWDSOURCING EMPHASIS ANNOTATION

Here, we describe our open-source crowdsourced annotation tool for
annotation of, e.g., prominence, mispronunciation, or vocal fry an-
notation. We developed our human annotation system as a word
selection task that we add to Reproducible Subjective Evaluation
(ReSEval) [19]. ReSEval is a subjective evaluation tool that handles
database, server, and crowdsourced participant acquisition to quickly
create and manage crowdsourced evaluations in Python. ReSEval
enables a greater variety of tasks and prescreening criteria (e.g., lis-
tening tests) than existing survey templates, such as those available
on Amazon Mechanical Turk (MTurk). For prominence annotation,
we first require annotators to pass a listening test that ensures a suit-
able listening environment, using the listening test method proposed
by Cartwright et al. [20]. We then present annotators with an au-
dio recording and the corresponding text (see Figure 1). As in the
annotation interface of Cole et al. [21], annotators are required to
listen to the audio file a minimum of two times and asked to select
all of the words that were emphasized by the speaker by clicking
on the words themselves. Annotators must start the audio to begin
selecting words, but may select words while the audio is playing.

1maxrmorrison.com/sites/prominence-estimation/

3. EMPHASIS ANNOTATION DATASET

We used our crowdsourced annotation system to perform human an-
notation on one eighth of the train-clean-100 partition of the
LibriTTS [22] dataset. Specifically, participants annotated 3,626 ut-
terances with a total length of 6.42 hours and 69,809 words from 18
speakers (9 male and 9 female). We collected at least one annotation
of all 3,626 utterances, at least two annotations of 2,259 of those ut-
terances, at least four annotations of 974 utterances, and at least eight
annotations of 453 utterances. We did this in order to explore (in
Section 6) whether it is more cost-effective to train a system on mul-
tiple annotations of fewer utterances or fewer annotations of more
utterances. We paid 298 annotators to annotate batches of 20 utter-
ances, where each batch takes approximately 15 minutes. We paid
$3.34 for each completed batch (estimated $13.35 per hour). Anno-
tators each annotated between one and six batches. We recruited on
MTurk US residents with an approval rating of at least 99 and at least
1000 approved tasks. Today, microlabor platforms like MTurk are
plagued by automated task-completion software agents (bots) that
randomly fill out surveys. We filtered out bots by excluding annota-
tions from an additional 107 annotators that marked more than 2/3
of words as emphasized in eight or more utterances of the 20 utter-
ances in a batch. Annotators who fail the bot filter are blocked from
performing further annotation. We also recorded participants’ na-
tive country and language, but note these may be unreliable as many
MTurk workers use VPNs to subvert IP region filters on MTurk [23].

The average Cohen Kappa score for annotators with at least
one overlapping utterance is 0.226 (i.e., “Fair” agreement)—but not
all annotators annotate the same utterances, and this overempha-
sizes pairs of annotators with low overlap. Therefore, we use a
one-parameter logistic model (i.e., a Rasch model) computed via
py-irt [24], which predicts heldout annotations from scores of
overlapping annotators with 77.7% accuracy (50% is random).

4. NEURAL PROMINENCE ESTIMATION

We propose a neural network that predicts human-annotated promi-
nence values for a sequence of words from acoustic features. Our
proposed model takes as input an 80-channel Mel spectrogram) at

https://www.maxrmorrison.com/sites/prominence-estimation/


Fig. 2. Three candidate prominence estimation models | We ex-
periment with a framewise model (left) as well as two wordwise
models: one that downsamples from frames to words just before the
loss function (posthoc wordwise; center) and one that downsamples
within the neural network (intermediate wordwise; right). The yel-
low, framewise encoder is a stack of convolution layers that operate
at the frame resolution. The magenta, wordwise decoder is a stack
of convolution layers that operate at the word resolution.

an evenly-quantized time frame resolution (e.g., ten milliseconds),
as well as a time-alignment between words and frames (i.e., the start
and end frame indices corresponding to each word). We found no
improvement when adding pitch, periodicity, or loudness features,
which may be redundant with the spectrogram. Our network pro-
duces one prominence value per word. Crucial to such a system is
the mechanism to perform variable-stride downsampling from the
frame resolution to the word resolution. Vaidya et al. [17] pro-
pose one option (which we refer to as prehoc wordwise) that seg-
ments words before input to the model, such that the receptive field
of the framewise encoder is limited to a single word. We identify
three additional locations within the system for performing down-
sampling (Figure 2): (1) (framewise) upsample the ground truth
prominence values to the frame resolution using linear interpolation
during training and downsample the network output to word resolu-
tion during inference, (2) (posthoc wordwise) downsample the net-
work output during training and inference, and (3) (intermediate
wordwise) downsample to the word resolution within the network.
We further identify four methods for variable-stride downsampling
from the frame resolution to the word resolution at each location:
(1) (average) take the channel-wise average over all frames cor-
responding to a word, (2) (max) take the channel-wise maximum
over all frames corresponding to a word, (3) (sum) take the channel-
wise sum over all frames corresponding to a word, and (4) (center)
take the value of the frame in the center of the word. Each frame-
wise encoder and wordwise decoder is a stack of six convolution

Downsampling location Downsampling Method
Average Center Max Sum

Inference (framewise) 0.102 0.153 0.102 0.137
Intermediate (wordwise) 0.656 0.438 0.674 0.675

Posthoc (wordwise) 0.440 0.385 0.623 0.645
Prehoc [17] (wordwise) 0.670 0.471 0.670 0.656

Table 1. Ablations of downsampling methods and locations |
Pearson correlations between estimated and ground truth promi-
nence on the unseen Buckeye [29, 21] dataset. Averages over three
runs.

layers with 80 channels, a kernel size of three, and intermediate
ReLU activation. Our hyperparameter search indicates six layers
improves over five or seven layers; 80 channels improves over 64 or
128 channels; ReLU improves over leaky ReLU [25], GeLU [26], or
Swish [27]; convolution layers improve over Transformer [28] lay-
ers; and dropout does not improve performance when our model is
not overparameterized.

5. EVALUATION

We design our evaluation to determine whether our proposed neural
prominence estimation models exceed the performance of previous
automatic prominence estimation methods. We perform ablations
to show the relative impact of design decisions, such as the method
for downsampling from frames to words. Finally, we demonstrate
the scaling behaviors of our best model as a function of two key
cost factors: the number of emphasis-annotated utterances and the
number of annotators per utterance.

5.1. Data

We train our models on our annotated LibriTTS partition (Sec-
tion 2). We determine word boundaries by performing forced
alignment between the speech transcript and audio. We use the Penn
Phonetic Forced Aligner (P2FA) [30] via the Python Forced Align-
ment (pyfoal) library [31]. We extract from the 16 kHz audio
80 bands of a log-mel spectrogram using a hopsize of 160 samples
and a window size of 1024 samples. We partition utterances into
train (80%), validation (10%), and test (10%) partitions. Scaling
experiments use a different partitioning (see Section 5.4).

To examine generalization to unseen speakers, datasets, and
speaking styles, we perform additional evaluation on emphasis an-
notations [21] of the Buckeye corpus of conversational American
English [29]. This evaluation dataset consists of 16 utterances from
16 speakers for a total of 256 utterances lasting 3.98 minutes and
containing 931 words. Each utterance is annotated by 32 native
speakers of American English.

5.2. Training

We train using an Adam optimizer with a learning rate of 1e−3 to
optimize a binary cross entropy (BCE) loss between predicted and
ground truth prominence values. In Table 2, we show that mean
squared error (MSE) and bounding the output to be between zero
and one performs comparably with BCE, making MSE a viable op-
tion for loss function as well. We train for 6,000 steps, validating
every 100 steps and checkpointing when the Pearson correlation be-
tween model output and human labeling (Section 5.3) is the maxi-
mum so far. We use a variable batch size [32] during training with a
maximum of 75,000 frames (12.5 minutes) per batch.



Buckeye LibriTTS
Model PC↑ BCE↓ PC↑ BCE↓
Proposed 0.675 0.337 0.534 0.358

MSE loss 0.672 0.340 0.533 0.361
Wavelet [9, 3] 0.529 – 0.393 –

Table 2. Automatic prominence estimation results | Pearson cor-
relation (PC) and binary cross-entropy (BCE) between inferred and
human annotations on two datasets. Includes our best model (the
intermediate wordwise model with sum downsampling), one abla-
tion, and a heuristic baseline. Averages over three runs.

5.3. Metrics

We measure the accuracy of a prominence estimation system by cal-
culating the Pearson correlation and BCE between the system’s out-
put and the corresponding ground truth prominence value for each
word. BCE is equal to the KL divergence between Bernoulli random
variables up to a dataset-dependent constant, making it well-suited
for our probabilistic view of prominence as Bernoulli distribution pa-
rameters (Section 1). We use Pearson correlation (instead of BCE) to
compare with digital signal processing (DSP) baselines, as the range
of system outputs varies between baseline systems and Pearson cor-
relation is scale-invariant.

5.4. Experimental design

We now describe our experiments designed to demonstrate the per-
formance of our model relative to previous works, the efficacy of our
individual design choices, and the scaling behaviors of interest.

In Table 1, we experiment with all combinations of the four
downsampling locations and four downsampling methods described
in Section 4. In Table 2, we ablate our loss function and compare to a
top-performing heuristic method (wavelet) [3] that classifies words
by thresholding wavelet-based features proposed by Suni et. al [9].

We demonstrate scaling behaviors for prominence estimation us-
ing our best model on curated data partitions of 400, 800, 1,600, and
3,200 utterances. We further analyze the cost efficiency of annota-
tor redundancy by training on 400 annotations with eight annotators,
800 annotations with four annotators, 1,600 annotations with two
annotators, and 3,200 annotations with one annotator. We discuss
implications for cost-effective annotation.

6. RESULTS

The accuracies of our proposed neural prominence estimation
method as well as baseline and ablation systems are reported in
Tables 1 and 2. In Table 1, we see that the variable-stride down-
sampling required for converting frame-resolution acoustic features
to word-resolution prominence estimations is best performed within
the network (intermediate) by taking the sum of each channel
over the frames corresponding to each word. This outperforms the
method proposed by Vaidya et al. [17] (prehoc) that segments the
input acoustic features into words and indicates that it is effica-
cious for the receptive field of the framewise encoder to span across
words. Relative to prehoc, our proposed intermediate method is
also faster to train (by 39.7%) and reduces GPU memory consump-
tion (by 69.1%) during training. In Table 2, we see that our best
model significantly outperforms a top heuristic baseline (wavelet)
in PC and BCE on both heldout data from our LibriTTS annotations
and heldout data from an unseen dataset with speakers and speaking
styles outside the training distribution (Buckeye).
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Fig. 3. Scaling behaviors for neural prominence estimation |
(top) Pearson correlation between inferred and human annotations
as a function of dataset size. (bottom) Pearson correlation as a func-
tion of number of annotators for a fixed annotation budget. Averages
over three runs.

Figure 3 demonstrates scaling behaviors for neural prominence
estimation using our crowdsourced emphasis annotations of the Lib-
riTTS dataset. We provide key takeaways:

For a fixed budget, use only one annotator per utterance | Neural
networks benefit from training on larger datasets. This benefit empir-
ically outweighs the benefit of variance reduction in the ground truth
distribution caused by annotator redundancy. However, when data
is limited, annotator redundancy can improve performance. Cole et
al. [21] note marginal variance reduction beyond seven annotators,
so we do not expect these improvements to extrapolate to, e.g., 16
annotations per utterance.

For a fixed budget, increasing annotations per utterance up to
eight improves convergence speed | As the number of annotations
per utterance increases from one to eight, the number of steps needed
for convergence significantly decreases.

To further examine scaling behaviors, we used our best model
to annotate the entire train-clean-100 partition of LibriTTS
and train a new model from scratch on 26,588 automatically anno-
tated utterances. The resulting model performed marginally worse
on heldout data, underscoring the utility of human annotations.

7. CONCLUSION

The prominence of a spoken word is a fundamentally perceptual
phenomenon. Our work highlights the benefits of utilizing hu-
man perception for prominence estimation, and demonstrates high-
quality, generalizable prominence estimation trained from crowd-
sourced emphasis annotations (Contribution 1). We further solve
the lack of publicly available prominence annotations suitable for
training a generalizable machine learning model (Contribution 2)
and provide tools (Contribution 3) and guidelines (Contribution 4)
for practitioners performing crowdsourced annotation. These con-
tributions enable future work in high-quality emphasis-controlled
text-to-speech, analysis of the human perception of prominence, and
automatic detection and control of other word-level attributes (e.g.,
disfluency, falsetto, and vocal fry).



8. REFERENCES
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