

Sunmook Choi¹ Sanghyeok Chung¹ Seungeun Lee¹ Soyul Han² Taein Kang² Jaejin Seo² II-Youp Kwak² Seungsang Oh¹ ¹Department of Mathematics, Korea University ²Department of Statistics and Data Science, Chung-Ang University

Introduction

Automatic speaker verification (ASV) with **VoxCeleb Speaker Recognition dataset** Limitations of previous studies: Employing ResNet-based models for ASV posseses a potential loss of temporal information, thereby casting doubt on its compatibility with statistics pooling methods.

Our Approach: Design an ASV system that enriches temporal information resulting in more meaningful statistics through the statistics pooling layer.

Methodology

Feature Engineering

- Input: Log-mel spectrograms
- Data Augmentation: MUSAN, Room Impulse Response (RIR), SpecAugment

Attentive Statistical Pooling (ASP)

- Attention score $\boldsymbol{s}_t = \boldsymbol{W}_2 \operatorname{\mathsf{ReLU}}(\boldsymbol{W}_1 \boldsymbol{h}_t + \boldsymbol{b}_1) + \boldsymbol{b}_2, \quad t = 1, \dots, T.$ (T: audio length)
- Attention weight $\alpha_{t,c} = \frac{\exp(s_{t,c})}{\sum_{i=1}^{T} \exp(s_{i,c})}, \quad c = 1, \dots, C.$ (C: dimension of the target feature space)
- Final concatenated vector $[\mu; \sigma]$

$$\mu_c = \sum_{t=1}^T \alpha_{t,c} h_{t,c}$$
$$\sigma_c = \sqrt{\sum_{t=1}^T \alpha_{t,c} h_t^2}$$

 $\sigma_{c} = \sqrt{\sum_{t=1}^{T} lpha_{t,c} h_{t,c}^{2}} - \mu_{c}^{2}$ (Okabe et al. 2018).

Tables

Table 1. Model performance							Table 2. ResNet Architecture				
Model	# Params	VoxCe	eleb1-0	VoxCe	eleb1-H	VoxCe	eleb1-E	Layer Name	Layer Details	Output Size	Bo
		EER (%)	minDCF	EER (%)	minDCF	EER (%)	minDCF	input	-	(80, T, 1)	
ResNet18-GAP	11.27M	2.03	0.1410	3.73	0.2300	2.08	0.1410	conv1	5×5 , BN, ReLU	(80, T, 64)	conv3_x
ResNet18-ASP	13.80M	1.62	0.1109	3.02	0.1842	1.64	0.1100	maxpool	3×3 window, stride 2	(40, T/2, 64)	conv4_x
TB-ResNet18	11.44M	1.36	0.0870	2.47	0.1497	1.39	0.0895	conv2_x	$Block(64,1,n_2)$	(40, T/2, 64)	conv5_x
ResNet34-GAP	21.38M	1.60	0.1080	3.20	0.1940	1.73	0.1190	Box (A / B / C)			GAP
ResNet34-ASP	23.91M	1.35	0.0847	2.69	0.1629	1.43	0.0966				
TB-ResNet34	21.55M	1.13	0.0687	2.20	0.1298	1.21	0.0779	linear	speaker embedding	192	

ICASSP 2024, Seoul, Korea

TB-ResBlock captures and retains temporal information through a transposed convolution by not reducing the corresponding dimension with the series of ResBlocks.

TB-RESNET: BRIDGING THE GAP FROM TDNN TO RESNET IN AUTOMATIC SPEAKER VERIFICATION WITH TEMPORAL-BOTTLENECK ENHANCEMENT

Temporal-Bottleneck Residual Block (TB-ResBlock)

ResBlock vs. TB-ResBlock

 \blacksquare $F: 3 \times 3$ conv, BN, ReLU, 3×3 conv, BN. $\blacksquare G_1: 3 \times 3 \text{ conv} (\text{stride:} (s, 2)), BN, ReLU.$ $\blacksquare G_2: 3 \times 3 \text{ conv} (\text{stride:} (1,2)), BN, ReLU.$ \blacksquare $I: 1 \times 1$ conv, BN (Identity). • s = 1 or 2. Here, s = 2 for readability.

Advantages of TB-ResBlock

Prevents the reduction of the temporal dimension through TB-ResBlocks \rightarrow Facilitates effective aggregation in ASP. Reduces and subsequently recovers the number of temporal frames \rightarrow Enables the exploration of more valuable temporal information. (Similar effects observed in bottleneck blocks in deeper ResNet architectures. (He et al. 2016))

Experiment

Experimental Setup

- Training dataset: VoxCeleb2 development set
- Testing dataset: VoxCeleb1 test set (VoxCeleb1-O, VoxCeleb1-H, VoxCeleb1-E) (Nagrani et al. 2019)
- Metric: equal error rate (EER), the minimum detection cost function (minDCF)

Performance Results on VoxCeleb1 test set

Quantitative comparison between ResNet-GAP (global average pooling), ResNet-ASP, and TB-ResNet is shown in **Table 1** below.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (RS-2023-00208284) and Institute for Information communications Technology Planning Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-00033, 50%, Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexity).

References

Nagrani, A., J. S. Chung, W. Xie, and A. Zisserman (2019). "Voxceleb: Large-scale speaker verification in the wild". In: Computer Science and Language.

Okabe, K., T. Koshinaka, and K. Shinoda (2018). "Attentive Statistics Pooling for Deep Speaker Embedding". In: Proc. Interspeech 2018, pp. 2252–2256. DOI: 10.21437 Interspeech.2018-993.

He, K., X. Zhang, S. Ren, and J. Sun (2016). "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770– 778.

Ablation studies

Μ

TB-F

TB-F

Controlling the number of retained temporal frames prior to ASP

Model tends to achieve better performance when retaining more temporal frames prior to ASP.

Validating the significance of transposed convolution in TB-ResBlocks

It marks degradation in performance upon the application of bilinear interpolation when compared with that of transposed convolution.

Limitations of TB-ResBlock

x A: ResNet with GAP

Block(128, 2, n_3) (20, T/4, 128)Block(256, 2, n_4) (10, T/8, 256)Block(512, 2, n_5) (5, T/16, 512)(1, 1, 512)

Box B: Res	Net wit	th ASP	Box C: TB-ResNet				
conv3_x Block(128,	2, n ₃)	(20, T/4, 128)	conv3_x	TB-Block(128, 2, n ₃)	(20, T/2, 128)		
conv4_x Block(256,	2, n_4)	(10, T/8, 256)	conv4_x	TB-Block(256, 2, n_4)	(10, T/2, 256)		
conv5_x Block(512,	2, n_5)	(5, T/16, 512)	conv5_x	TB-Block(512, 2, n_5)	(5, T/2, 512)		
flatten except for t	ime axis	$(T/16, 5 \times 512)$	dw_conv6	5×1 , BN, ReLU	(1, T/2, 512)		
ASP channel-dep	pendent	5120	ASP	channel-dependent	1024		

Discussion

lodel	# Frames	VoxCel	eb1-0
		EER (%)	minDCF
ResNet18	T/16	1.68	0.1100
	T/8	1.57	0.1050
	T/4	1.45	0.0920
	T/2	1.36	0.0870
linear	T/2	1.89	0.1155
ResNet34	T/16	1.35	0.0850
	T/8	1.23	0.0820
	T/4	1.27	0.0780
	T/2	1.13	0.0687
linear	T/2	1.45	0.0885

The number of parameters remains unchanged, while there is an increase in computational workload. We will further improve these through additional research.