Cross-modal Multiscale Difference-aware Network for Joint Moment Retrieval and Highlight Detection

Mingyao Zhou^{1,2,3}, Wenjing Chen⁴, Hao Sun^{1,2,3+}, Wei Xie^{1,2,3+}

¹Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China ²School of Computer, Central China Normal University, Wuhan, China

³National Language Resources Monitoring and Research Center for Network Media, Central China Normal University, Wuhan, China

⁴School of Computer Science, Hubei University of Technology, Wuhan, China

⁺Corresponding authors: haosun@mail.ccnu.edu.cn, XW@mail.ccnu.edu.cn

Motivation

Although existing methods [1-2] for joint moment retrieval and highlight detection achieve impressive performance, they still face some problems.

- > Semantic gaps across different modalities.
- > Smooth transitions among diverse events.
- > Various durations of different query-relevant moments and highlights.

Contribution

- The contributions of this paper are as follows:
- Build a clip-text alignment module to alleviate the modal gaps.
- \checkmark Propose a multi-scale difference perception module to fully integrate the differential information of adjacent clips and obtain joint representations through multi-scale modeling.

Therefore, a Cross-modal Multiscale Difference-aware Network is proposed.

 \checkmark A large number of experiments prove the effectiveness of the proposed method.

Methodology

a) An overview of the proposed cross-modal multiscale difference-aware network (CMDNet).

b) Design details of multi-scale difference perception module.

- \succ We start by extracting visual and textual features using pre-trained encoders.
- > Then, we create a cross-modal alignment module inspired by CLIP [3] to bridge the semantic gaps between text and video. This module uses inner modality constraints to refine video representations and **intermodal constraints** to align text and visual features.
- \succ To alleviate issues posed by smooth transitions in video events, we introduce a multi-scale perception module that highlights query-related features and incorporates **differential information** between adjacent clip features.
- \succ To enhance diversity in target moment durations, we utilize multi-scale convolution and graph convolution components. These components capture temporal dependencies at different scales and model global dependencies in the video.

Results & Discussion																
	Moment Retrieval					HD		Method	R1@0.5	R1@0.7	Method	R1@0.5	R1@0.7			
Method	R	1	mAP			\geq Very Good		2DTAN [18]	40.94	22.85	VSLNet [17]	47.31	30.19			
	@0.5	@0.7	@0.5	@0.75	Avg.	mAP	HIT@1	FVMR [19] UMT† [3]	42.36 48.31	24.14 29.25	QDDETR [4] CMDNet	<u>50.67</u> 56.24	<u>31.02</u> 35.16			
XML+ [2]	46.69	33.46	47.89	34.67	34.90	35.38	55.06	ODDFTR [4]	52 77	31 13	MDFTR (2)	53 63	31 37			
MDETR [2]	52.89	33.02	54.82	29.40	30.73	35.69	55.60	ODDETR † [4]	55.51	34.17	ODDETR [4]	57.31	32.55			
MHDETR [6]	60.05	42.48	60.75	38.13	38.38	38.22	60.51	CMDNet	53.33	33.47	UniVTG [15]	58.01	35.65			
QDDETR [4]	<u>62.40</u>	<u>44.98</u>	<u>62.62</u>	<u>39.88</u>	<u>39.86</u>	<u>38.64</u>	62.40	CMDNet [†]	54.97	33.52	CMDNet	58.55	36.16			
UniVTG [15]	58.86	40.86	57.60	35.59	35.47	38.20	60.96	Tab 2: Results on Charades-STA 't' denotes introducing overa gudio information								
CMDNet	02.52	40.09	03.03	43.44	42.07	39.00	02.20	u_{μ} . z_{μ} v_{μ} $v_{$								
UMT [3]	56.23	41.18	53.38	37.01	36.12	38.18	59.99	> Judging from the experimental results presented here, Our approach outperforms								
MIM [5]	59.99	41.50	55.85	36.84	36.45	38.96	62.39	others.								
QDDETR [4]	<u>63.06</u>	<u>45.10</u>	<u>63.04</u>	40.10	<u>40.19</u>	<u>39.04</u>	<u>62.87</u>	\triangleright But when we directly splice audio information without alignment modeling.								
CMDNet	63.62	47.28	63.89	44.12	43.23	40.06	63.16	performance suffered.								

Tab.1: Experimental results on the QVHighlights test set. The lower half of the table represents the introduction of audio information.

 \blacktriangleright In the future, we'll focus on leveraging audio's semantic information for MR and HD tasks, effectively.

References

- 1. Lei, J.; Berg, T. L.; and Bansal, M. 2021. Detecting Moments and Highlights in Videos via Natural Language Queries. In NeurIPS, 11846–11858.
- 2. Moon, W.; Hyun, S.; Park, S.; Park, D.; and Heo, J.-P. 2023. Query-dependent video representation for moment retrieval and highlight detection. In IEEE CVPR, 23023–23033.
- 3. Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; Krueger, G.; and Sutskever, I. 2021. Learning transferable visual models from natural language supervision. In ICML, 139:8748–8763.