

MULTIMODAL SENTIMENT ANALYSIS BASED ON 3D STEREOSCOPIC ATTENTION

Jian Huang*, YuanYuan Pu*,[∞], Dongming Zhou*, Hang Shi*, ZhengPeng Zhao*,

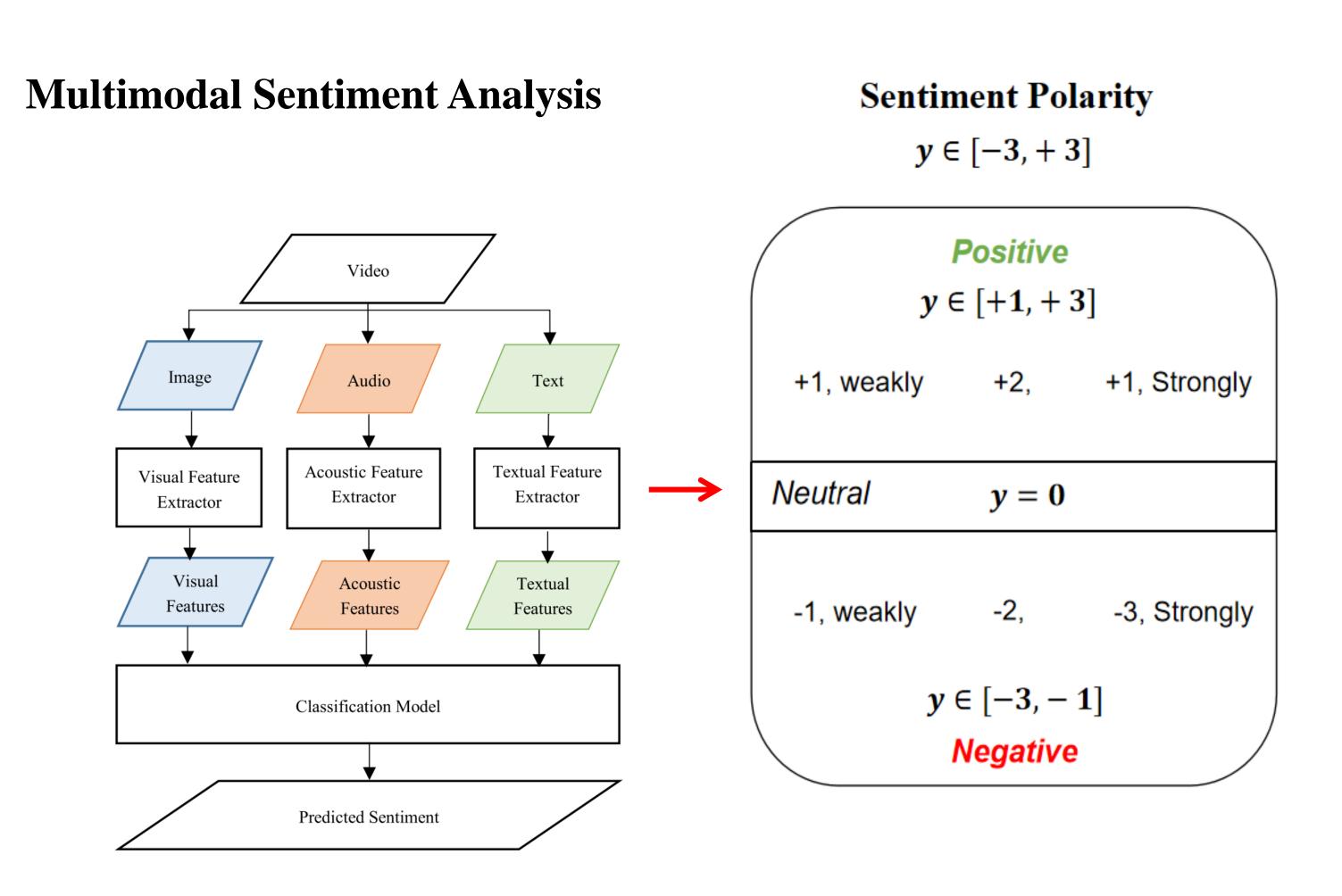
Dan Xu*, Jinde Cao[◊]

*YunNan University, School of Information Science and Engineering

Driversity Key Laboratory of Internet of Things Technology and Application Yunnan Province

Southeast University, China and Yonsei Frontier Lab, Yonsei University, South Korea

Background



Motivation

eg. a smile coupled with a positive word is positive, while audio represents sarcasm and ultimately leads to an opposite shift to negative.

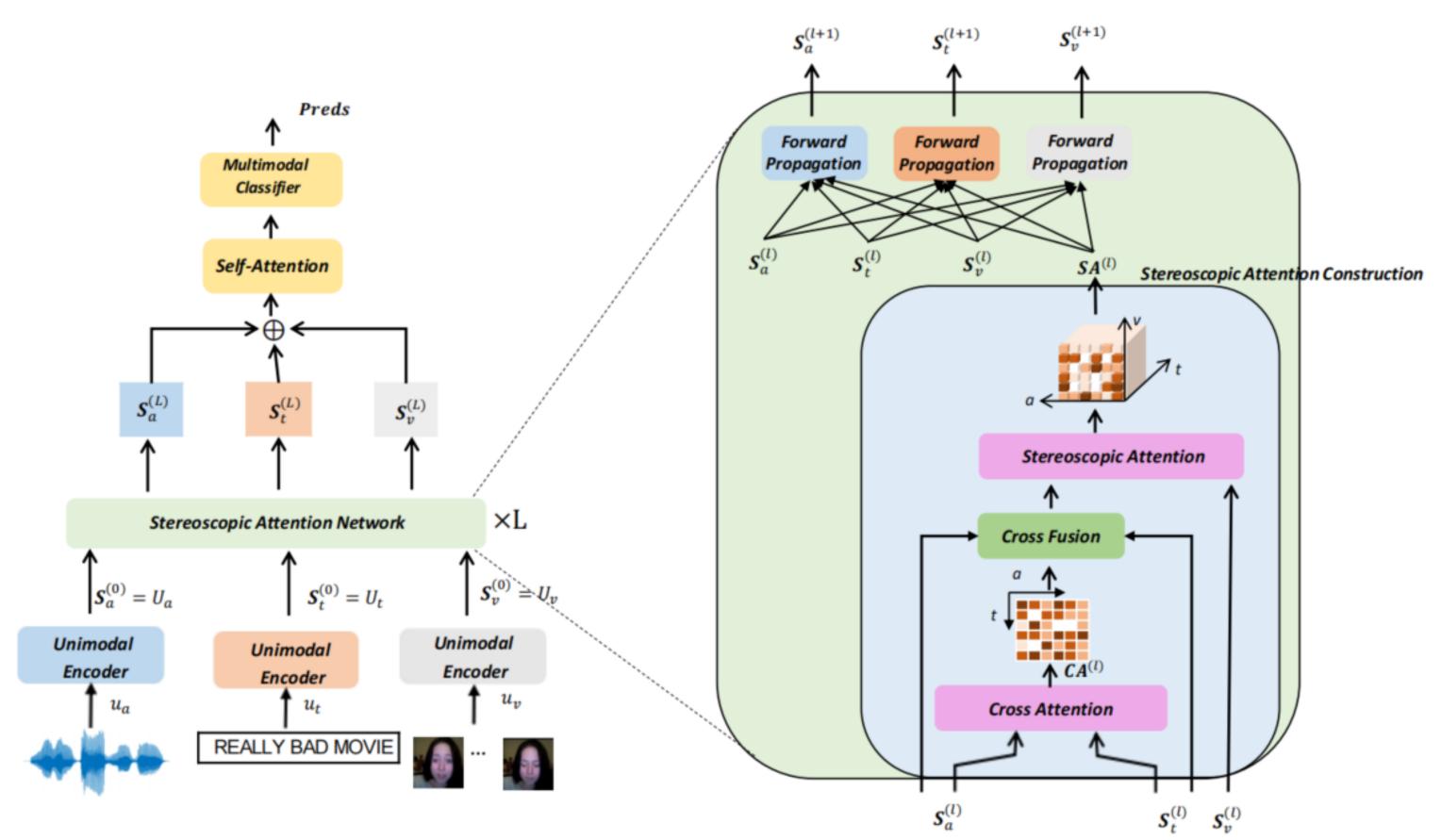
Problems with the current mainstream approach:

- RNNs only integrate unimodal information and miss interactions between modalities;
- The attention mechanism of the Transformer only explores the bi-modal interactions;
- General graphs contain only two nodes per edge.

Key challenges:

- **◆** Different from 2D attention, there is dimension rising in the 3D attention generation;
- **◆** Based on the generated 3D attention, how to integrate the information between each 2D sequence modality

Overall framework



Challenge 1 → **Progressive Stereoscopic Attention**

Take TA,V as an example:

Firstly, 2D cross-modal attention[3] is generated:

$$CA^{(l)} = Softmax \left(\frac{W_t^{(l)} S_t^{(l)} W_a^{(l)T} S_a^{(l)T}}{\sqrt{d}} \right)$$

Then, the 2D cross-modal attention weights are implemented to generate 3D attention:

$$\mathbf{F}_{i,j}^{(l)} = \mathbf{S}_{t,i}^{(l)} + \mathbf{C}\mathbf{A}_{i,j}^{(l)} \odot \mathbf{S}_{a,j}^{(l)}, \{i \in T_t, j \in T_a\} \quad \mathbf{S}\mathbf{A}^{(l)} = Softmax\left(\frac{\mathbf{F}^{(l)}\mathbf{W}_v^{(l)T}\mathbf{S}_v^{(l)T}}{\sqrt{d}}\right)$$

Challenge 2 \rightarrow The forward propagation for stereoscopic attention

Taking the text modality as an example:

$$S_{v \to t}^{(l)} = \sum_{i=0}^{T_a} \frac{\left(SA^{(l)}S_v^{(l)} \right) T_t \times i \times d}{T_a}$$

The text features are modulated by the audio and visual information, and the modulation factor α and β ensure the offset within a reasonable range.

$$\boldsymbol{S}_{a \to t}^{(l)} = \sum_{j=0}^{T_v} \frac{\left(\boldsymbol{S}\boldsymbol{A}^{(l)}\boldsymbol{S}_a^{(l)}\right) T_t \times j \times d}{T_v}$$

$$\mathbf{S}_{t}^{(l+1)} = \mathbf{S}_{t}^{(l)} + \alpha * \mathbf{S}_{v \to t}^{(l)} + \beta * \mathbf{S}_{a \to t}^{(l)}$$

Experiments and results

1. Results on CMU-MOSI and CMU-MOSEI datasets

Model	CMU-MOSI				CMU-MOSEI			
	Acc2↑	F1↑	MAE↓	Corr↑	Acc2↑	F1↑	$MAE \downarrow$	Corr†
MFN[2]	77.26	77.38	0.9534	0.6672	80.23	80.77	0.5693	0.7202
MulT[3]	81.47	81.4	0.7892	0.7763	80.90	80.87	0.5690	0.7240
MISA[8]	81.95	81.91	0.7596	0.7771	81.10	81.18	0.5710	0.7310
BERT-MAG[9]	82.42	82.38	0.7313	0.7836	81.90	82.32	0.5640	0.7597
BBFN[5]	80.33	80.32	0.8216	0.6277	82.29	82.21	0.5820	0.7270
Self-MM[10]	82.51	82.47	0.7251	0.7896	82.17	82.46	0.5351	0.7605
MMIM[11]	82.33	82.28	0.7514	0.7718	80.04	80.47	0.5794	0.7352
UEGD*[12]	79.90	79.90	0.8860	0.6910	81.20	81.70	0.5430	0.7480
DMD[13]	82.07	82.08	0.7470	0.7859	82.81	83.06	0.5473	0.7518
Ours	83.68	83.71	0.7124	0.7941	83.87	83.91	0.5210	0.7680

2. Ablation Study

Table 2. Ablation study of our proposed method on CMU-MOSI. "w/o" denotes removing the component.

Model	Acc2↑	F1↑	MAE↓	Corr↑
w/o SA	80.32	80.21	0.9012	0.7351
UniAtten	81.25	81.29	0.8797	0.7418
CrossAtten	82.93	82.96	0.8452	0.7492
TV,A	83.23	82.87	0.7194	0.7585
AV,T	83.54	83.28	0.7185	0.7691
1 Layer	82.05	82.02	0.7430	0.7679
3 Layer	82.16	82.14	0.7342	0.7705
4 Layer	81.40	81.47	0.7496	0.7660
Ours	83.68	83.71	0.7124	0.7941

3.Case Study

