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PROBLEM STATEMENT DEEP MuLTI-FRAME MVDR FILTER

= multi-frame speech enhancement algorithms provide good noise reduction = integrate multi-frame MVDR filter into end-to-end supervised learning
and low speech distortion framework [5]: @, , ®; , and ¢, estimated using DNNs:
= multi-frame filters can be estimated using deep neural networks (DNNs) with
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or without imposing structure on the filter coefficients _ {rainable , . -bie

— multi-frame minimum variance distortionless response (MVDR) filter

covariance a-priori speech MFMVDR
matrices SNR IFC vector filter

this poster: different procedures to estimate the parameters

required by the multi-frame MVDR filter
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3. independent components: @, , = E{yy/} = D, o
- speech inter-frame correlation (IFC) vector descrlbes correlation between iii) Vandermonde Factorization (PDT)
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= minimizes output inference power spectral density while leaving

correlated speech component undistorted: iv) Rank-1 (R1)
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= Imposes dominant principal subspace

- ¥, .18 highly time-varying and difficult to estimate — rewrite using more _ . o _ _ _
’ = circumvent explicit matrix inversion — lower computational complexity

accessible noisy & interference covariance matrices and a-priori SNR &;:
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1. Speech Enhancement Performance
®; , and ¢, 2.5

main objective: estimate @, ,

B deep MFMVDR (RS)
§ 15 I deep MFMVDR (CD)
B deep MFMVDR (PDT)
DATASET L“ 1 0 B deep MFMVDR (R1)
based on deep noise suppression (DNS) challenge dataset [2]: <] 0-5 = 2:2229 EZ?L) ex)
training & validation T e
anechoic English speech (LibriSpeech) anechoic English speech (Uni Graz)
noise: Audioset, Freesound, DEMAND noise: Freesound = deep MFMVDR employing positive semi-definite matrix structure (CD) and
SNRs from 0 dB to 19 dB rank-1 matrix structure (R1) yield highest performance
100 h 150 utterances = baseline algorithms are outperformed: direct estimation of real-valued

mask, complex-valued mask, or
= recursive smoothing (RS) and positive semi-definite Toeplitz structure (PDT)
yield much worse performance

S ETTINGS 2. Computational Complexity

- f.=16 kHz; STFT: \/Hann window, 8 ms frame length, 75 % overlap . deep MFMVDR (RS) N L RTF: ratio between
- filter length N = 5 (temporal context of 16 ms) r> deep MFMVDR (CD) S S processing time and signal
= features: log-magnitude, cos and sin of phase of noisy microphone signals = deep MFMVDR (PDT) | duration
- DNN architecture: causal temporal convolutional networks (TCNs) [3] S deep MFMVDR (R1) N - allRTFs <1

= 2 stacks of 4 layers; hidden dimensions chosen to yield similar number o | = deep MFMVDR filters more

of parameters across compared algorithms (ca. 5 M) £ masking (real) IS complex than baseline

= temporal receptive field size: 128 ms ©  masking (complex) algorithms, primarily due to
= scale-invariant signal-to-distortion ratio (SI-SDR) loss function ) DMFF M == MFMVOR contibutor additional linear algebra
« trained using AdamW optimizer for < 150 epochs (with early stopping) 000 005 040 045 operations in MFMVDR tilter
= minimum gain of -17 dB during evaluation
= diagonal loading applied to estimated covariance matrices before inversion rank-1 matrix structure yields good trade-off
- baseline algorithms: direct estimation of mask or multi-frame filter [4] between speech enhancement / complexity
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