A MACHINE-LEARNING MODEL FOR DETECTING DEPRESSION, ANXIETY, AND STRESS FROM SPEECH

Mashrura Tasnim, Ramon Diaz Ramos, Eleni Stroulia and Luis A. Trejo

Μοτινατιον

"A mental disorder is characterized by a clinically significant disturbance in an individual's cognition, emotional regulation, or behavior. "-WHO

Share of population with mental health disorders, 2019 This includes depression, anxiety, bipolar, eating disorders, and schizophrenia

YOUTHDASS DATASET

ongitudinal depression, anxiety and stress dataset		DASS-21 scores in YouthDASS			
Language	English and Spanish		Depression	Anxiety	Stress
# Participants	40 (26 Spanish, 14 English)	Threshold	9	7	15
# Recordings	1,049 (838 Spanish, 211 English)	Mean	5.94	4.79	7.12
Avg #samples per participant	26	Std. Dev	7.55	6.90	8.20
Average DASS-21 score	15.3 (SD = 12.3)	Median	4	2	4

- 1 in every 8 people live with a mental disorder
- Most patients cannot access treatment
- Symptoms can be detected from voice

OBJECTIVE

To develop a practical system that can capture the audio of the users' voices and analyze it to estimate their depression, anxiety and stress level

PARTICIPANTS' ADHERENCE TO STUDY PROTOCOL

Participants with lower DASS-21 scores adhered better to the data collection procedure, designed as a routine activity to be performed twice a week

METHOD

Data Preprocessing

(3) ML Model Construction

0.103

0.200

CONTRIBUTION

1) Curated YouthDASS dataset

- Multilingual longitudinal speech corpus to study \bullet depression, anxiety, and stress
- Labelled with DASS-21 scores
- 2) Validated participants' adherence to study protocol
- 3) Explored the effectiveness of our speech processing pipeline on the YouthDASS data set
- VGG-16 features were extracted from speech spectrograms

RESULTS

	Citation	Method	RMSE	NRMSE
Depression	Kim et al., 2013	Deep CNN on log-Mel spectrograms	_	0.205
	Ours	1-D CNN trained on VGG-16	7.09	0.169
Anxiety	Fatima et al. 2021	MLP on sentimental BOW extracted from 142 suicide notes	_	0.089
	Ours	1-D CNN trained on VGG-16	7.69	0.183

• 2 layer 1-D CNN model was trained for predicting depression, anxiety and stress severity

MLP on sentimental BOW extracted from 142 suicide Fatima et al., 2021 Stress notes 1-D CNN trained on VGG-16 8.40 Ours

Our proposed **1-D CNN** model using acoustic features exclusively achieved better NRMSE than state-of-the-art models in **depression prediction**; and performed competitively with acoustic and linguistic models in predicting anxiety and stress

KEY TAKEAWAYS

- **1. YouthDASS dataset** captures valuable information on the post-pandemic effect on the mental health of youths
- Our proposed **CNN model** demonstrates competitive performance to the state-of-the-art acoustic and linguistic models in predicting depression, anxiety, and stress severity