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ABSTRACT

Whole-slide image (WSI) classification is a challeng-
ing task because 1) patches from WSI lack annotation, and
2) WSI possesses unnecessary variability, e.g., stain proto-
col. Recently, Multiple-Instance Learning (MIL) has made
significant progress, allowing for classification based on
slide-level, rather than patch-level, annotations. However,
existing MIL methods ignore that all patches from normal
slides are normal. Using this free annotation, we introduce a
semi-supervision signal to de-bias the inter-slide variability
and to capture the common factors of variation within normal
patches. Because our method is orthogonal to the MIL algo-
rithm, we evaluate our method on top of the recently proposed
MIL algorithms and also compare the performance with other
semi-supervised approaches. We evaluate our method on two
public WSI datasets including Camelyon-16 and TCGA lung
cancer and demonstrate that our approach significantly im-
proves the predictive performance of existing MIL algorithms
and outperforms other semi-supervised algorithms. We re-
lease our code at https://github.com/AITRICS/pathology mil.

Index Terms— whole-Slide Image, WSI classification,
Multiple-Instance Learning, Semi-Supervised Learning

1. INTRODUCTION

Whole slide images (WSI) are digitized histology slides that
preserve the bountiful information of original histology [1, 2].
With WSI, pathologists no longer use glass slides with a mi-
croscope but can apply various computing tools to process the
digitized image [3]. WSI has not only improved the workflow
and diagnostic procedure of pathologists but also enabled dis-
ease analysis, e.g., cancer prognosis analysis, to benefit from
deep learning technology. However, two main difficulties hin-
der the application of the conventional deep learning methods
to whole slide image analysis.

First, WSIs are extremely large in size, often reaching up
to 1010 pixels [1]. Due to its exceptionally large size, exist-
ing methods usually employ patch-based processing - a WSI
is split into small image patches which are then processed
using the image encoder. However, a thorough examination
of the whole slide image for a patch/pixel-level annotation is
nearly infeasible due to the exceptionally large size of WSI,

and therefore, a label for each image patch is usually lacking.
Recently, multiple-instance learning (MIL) has been drawing
attention in disease analysis of whole slide images since it ex-
empts costly pixel-level annotation, which was required for
traditional machine learning (ML) approaches for WSI anal-
ysis [4]. Among various approaches within the MIL algo-
rithm, attention-based MIL has shown promising results re-
cently, which aggregates all instance embeddings into a single
bag-level embedding using an attention module [4, 5, 6].

Second, WSIs possess wide variations, such as differences
in tumor types, pen ink, and staining protocols [7, 8, 9, 10].
Though some variations can be informative, some variations
are not and may even create a spurious correlation to the la-
bel. Lin et al. [9] has introduced a concept of ‘bag prior’ and
defined it as ‘an instance(patch)-shared information per bag
(WSI) but irrelevant to the label’, which therefore can cause
the spurious correlation between instances and labels. In
this study, we suggest improving the predictive performance
of existing MIL algorithms by reducing the inter-slide bias
by implementing a synchronized instance embedding center.
The method and the result are depicted in Fig. 1 and 2-(a),
respectively.

The lack of local annotation for WSI is no longer prob-
lematic due to the widespread usage of the MIL algorithm.
However, it has to be noted that WSI implicitly provides local
annotation for negative slides; every tissue region from nega-
tive slides is negative. Therefore, even without explicit local
annotation, we have access to normal-label (disease-negative)
patches, which are disregarded in MIL. We aim to use this im-
plicit information from WSI.

Such circumstance has been studied in one-class classifi-
cation (OCC), where only a single class data is present during
the training phase; data from another class, i.e., anomalous
data, can appear during the test phase. Various approach has
been introduced including the generative approach, synthe-
sizing anomalies, and embedding-based approach [11]. Moti-
vated by the embedding-based approach, we hypothesize that
mapping all normal patches into a compact space can not only
reduce the aforementioned inter-slide bias but also facilitate
the model to capture the common factors of variation within
the normal patches. Capturing common factors within normal
patches can help distinguish normal, i.e. negative, and posi-
tive patches. We thus aim to demonstrate that creating com-



Fig. 1. Overview of our proposed Compact and Debiased Negative Embedding attached to the MIL algorithm. In this figure,
the staining protocol is exemplified as the ‘bag-prior’; WSIs with darker stains are in yellow boxes whereas the green box
indicates the WSI with lighter staining. Our method aims 1) to reduce the ‘bag-prior’ by synchronizing the center of all patch
embeddings from negative WSIs and 2) to impose a compact embedding for all patch embeddings from negative WSIs, as
indicated by the black arrows. Note that triangles and dots in (d) are instance embeddings from different WSI indicated in (a).

pact normal patch embedding improves the predictive perfor-
mance of existing MIL algorithms.

In this study, we aim to enhance the slide-level predic-
tive accuracy of existing MIL methods using patches from the
disease-negative slides. Specifically, we propose to minimize
the standard deviation of all instance embeddings (before the
attention aggregator) from negative WSI using a single learn-
able negative instance mean embedding vector. We hypoth-
esize that compact negative representation will lead to more
precise attention thus leading to the improved predictive per-
formance of MIL algorithm.

We evaluate our method on two public WSI datasets, i.e.,
Camelyon-16 and TCGA lung cancer, to demonstrate that our
approach improves the slide-level prediction of the existing
MIL algorithms. We also compare the performance gain of
our algorithm with other semi-supervised algorithms in WSI
classification using MIL as well.

2. METHOD

In this paper, we propose a semi-supervision signal that uti-
lizes all patches from disease-negative slides to improve the
predictive performance of the MIL model. Our aim is 1) to
reduce the bias of each WSI, e.g., caused by varying staining
protocol, and 2) to facilitate the mapping module in MIL al-

gorithms, i.e., g(·) in Fig. 1, to capture the common factors
of variation within the normal patches, which can help assign
a more precise attention score to each instance in attention-
based MIL. Note that our method is orthogonal to the existing
MIL algorithms and thus can be attached to any existing MIL
algorithms to improve the predictive performance.

Definition 1 (WSI Dataset). We consider a WSI dataset S to
consist of N whole slide images. Elements of S are tuples, i.e.
S := {(s1, ywsi

1 ), ..., (sN , ywsi
N )}, where si and ywsi

i denotes
the ith whole slide image and its disease class label.
Definition 2 (Patch Dataset). ith whole slide image si con-
sists of K tuples after preprocessing, i.e., si:={(pik, ypatchik )}Kk=1.
pik and ypatchik denote the extracted image patch and its label
which is only known when the corresponding WSI is disease-
negative, i.e., ypatchik = 0 ∀k when ywsi

i = 0. The number of
image patches K varies per slide si. We denote the encoded
image patch xik := f(pik) and xi := {xik}Kk=1 where f(·) is
the offline image encoder in Fig. 1.

Revisiting Multiple Instance Learning for Whole Slide
Image Classification. In general, as illustrated in Fig.1, the
WSI classification pipeline usually consists of two stages: 1)
image encoder f(·), and 2) MIL module (Fig. 1-c). [12].
For the image encoder, most recent studies utilize offline



Table 1. Data statistics of Camelyon-16 and TCGA-Lung
Dataset Training Test Total

Camelyon-16 # WSI 270 129 399
# Patch 2,428,707 1,174,691 3,603,398

TCGA-Lung # WSI 751 248 999
# Patch 12,048,148 3,156,655 15,204,803

Table 2. Performance comparison between baseline MIL
models and MIL models with our proposed method.

Dataset Camelyon-16 TCGA-Lung
Method AUC ACC AUC ACC

85.08 86.82 97.47 93.18
DSMIL[4] +Ours 88.11 87.75 97.56 93.84

∆ +3.03 +0.93 +0.09 +0.66

86.28 85.74 97.79 93.93
DTFD-MIL[5] +Ours 90.16 88.37 97.88 94.41
(AFS) ∆ +3.88 +2.63 +0.09 +0.48

82.61 86.2 96.4 89.19
ABMIL[6] +Ours 89.24 87.6 96.58 97.7
(Attention) ∆ +6.63 +1.4 +0.18 +8.51

85.71 86.36 96.53 97.38
ABMIL[6] +Ours 88.77 87.6 96.99 90.24
(GatedAttention) ∆ +3.06 +1.24 +0.46 -7.14

pre-trained image encoder, e.g., using ImageNet, which can
reduce the computational cost of model training and memory
consumption [12, 7]. We use a self-supervised pre-trained
ResNet-50 using ImageNet [13] and DSMIL pre-trained
ResNet-18 [4] for Camelyon-16 and TCGA-Lung cancer
classification tasks, respectively.

MIL module (Fig. 1-c) usually consists of two stages:
1) mapping function g(·) and instance embedding aggregator
h(·), which, in recent popular attention-based MIL, aggre-
gate each instance embedding using their respective attention
score using querying function [4, 5, 6]. In this study, we aim
to constrain g(·) to yield compact embedding for all disease-
negative patches.

Compact Negative Embeddings with Debiased Bag
Prior. We hypothesize that both 1) learning compact negative
instance representations from disease-negative bags and 2)
reducing the ‘bag prior’ [14, 15] can improve the predictive
performance of the MIL algorithm. Note that Fig. 1 depicts
the exemplary ‘bag prior’ caused by the staining protocol;
homogeneous/heterogeneous staining protocol can lead to
more similar/less similar image patch embedding, and it can
be wrongly exploited by the MIL model and thus may create
a spurious correlation between unnecessary image context
and the label.Considering that all patches from the negative slide are
disease-negative and from the positive slide are mostly nega-
tive as well [4], we were motivated by the approach from the
anomaly detection community to impose a compact descrip-
tion of normal data [14, 15]. To this end, we design a supple-

mentary loss function to minimize the standard deviation of
patch embeddings g(xi) when ywsi

i = 0 (negative WSIs) as
well as to synchronize the center of patch embeddings from
every negative slide. Specifically, we used a single linear pro-
jection layer l(·) to transform g(xi) into a M -dimension rep-
resentation and impose compact embeddings for all negative
slides (we used M = 128 throughout the study). We also
jointly train M -dimension distribution center of the disease-
negative instance embedding µ̂ to reduce the ‘bag prior’ by
minimizing the standard deviation of instance embeddings
from all negative WSI using a single distribution center. The
equation can be shown in Eq. 1:

Lneg =
1

M

M∑
m

√√√√ 1

K − 1

K∑
k=1

(g(xik)− µ̂)2 (1)

Note that µ̂ is a learnable parameter shared by all WSI
slides to synchronize the center of negative embedding. Our
algorithm is not bound to a binary classification task but is
applicable to multi-class classification tasks as well. In a
multi-class classification scenario, we learn multiple embed-
ding centers with multiple linear projection layers l(·) (equal
to the class number). To avoid degenerate solutions, e.g., ze-
ros for all parameters in l(·), we increase the standard devia-
tion when the standard deviation is smaller than the threshold
thr. The equation can be shown in Eq. 2:

Lpos =
1

M

M∑
m

ReLU

(

thr −

√√√√ 1

K − 1

K∑
k=1

(g(xik)− µ̂)2
) (2)

As a result, the overall loss can be described as below.
Throughout this paper, we call our method CDNE, i.e. com-
pact and debiased negative embedding:

Loverall = LMIL + λnegLneg + λposLpos (3)

3. EXPERIMENT

Dataset. In this study, we employ two datasets for histopatho-
logical analysis: Camelyon-16 and TCGA-Lung (Table 1).
The Camelyon-16 dataset comprises 399 WSIs, with 270 allo-
cated for training and 129 for testing, totaling over 3.6 million
patches. On the other hand, the TCGA-Lung dataset features
999 WSIs, with 751 designated for training and 248 for test-
ing, culminating in more than 15.2 million patches. As a pre-
processing, we segmented both datasets into smaller patches
with a fixed mpp of 0.5 and disregarded background patches.



Fig. 2. (a) Instance embedding center per normal test WSIs
(80 dots in both green and red); Mean standard deviation of
instance embeddings per validation WSIs changes in ABMIL
(Gated Attention) without ours (b); and with ours (c).

Fig. 3. Attention map comparison with/without our method
on ABMIL (Gated Attention) with 2 test WSIs. (a) WSI with-
out annotation; (b) WSI with annotation; (c) heatmap from
ABMIL (Gated Attention) baseline; (d) heatmap from Ours +
ABMIL (Gated Attention) baseline

For all performance evaluations, we use the averaged area un-
der the receiver operating characteristic (AUROC) and predic-
tion accuracy from 5-fold cross-validation (CV) using a test
set.

CDNE increases the performance of MIL. We imple-
mented four recent MIL algorithms and examined the efficacy
of our approach on top of them: DSMIL[4], DTFD-MIL[5],
ABMIL-Attention, and ABMIL-Gated Attention [6]. To
assess the performance of our method, we benchmark the
performance of these MIL models both with and without
employing our CDNE. As illustrated in Table 2, the appli-
cation of CDNE significantly boosts both the AUROC and
accuracy metrics for the Camelyon-16 dataset. In the case
of the TCGA-Lung dataset, where baseline MIL models al-
ready demonstrate strong performance, CDNE still manages
incremental improvements in predictive accuracy, with the
exception of the ABMIL-Gated Attention in accuracy metric.
Note that both pulling through negative embeddings (eq.1)
and pushing through positive embeddings (eq.2) contribute
to the performance increase, and there exists an optimal loss
weight for both losses as described in Table. 4.

CDNE outperforms other semi-supervised method.
Our approach can be categorized as semi-supervised learning

Table 3. Performance comparison between baseline
DSMIL[4] and DSMIL with various SSL methods.

Dataset
Method Camelyon-16 TCGA-Lung

AUC ACC AUC ACC
DSMIL[4] 85.08 86.82 97.47 93.17

+Ours 88.11 87.75 97.56 93.84
∆ +3.03 +0.93 +0.09 +0.67

+DivDis[16] 82.29 85.11 97.5 92.98
∆ -2.79 -1.71 +0.03 -0.19

+Psuedo-Label[17] 77.36 81.6 97.16 92.1
∆ -7.72 -5.22 -0.31 -1.07

Table 4. Ablation study on λNegative and λPositive with
DSMIL+ours in Camelyon-16 test set.

λNegative 0 1 10 100 1000
AUC 85.87 86.80 88.11 70.71 64.95
ACC 87.44 86.98 87.75 69.77 61.71
λPositive 0 0.3 3 30 300
AUC 86.93 81.78 88.11 85.0 84.45
ACC 87.13 83.26 87.75 86.67 86.51

(SSL) in that it utilizes the implicit patch labels of disease-
negative WSI; all patches from the negative slides are nega-
tive. Consequently, we compare the performance gain with
other semi-supervised approaches. Specifically, we com-
pare the predictive performance of MIL when attached with
CDNE (ours), Myronenko [17], and DivDis [16] in Dsmil set-
ting [4]. As described in Table 3, our approach outperforms
other alternatives that can utilize the patch label (negative)
from negative WSI.

CDNE de-biases negative embeddings and learn better
discriminative feature to distinguish positive and negative
WSI. As shown in Fig. 2-(a), our method effectively reduces
the inter-slide bias when attached to the existing MIL algo-
rithm. Moreover, our compact negative embedding approach
creates distinct standard deviations between positive and neg-
ative WSIs as described in figure 2-(b,c). Our compact nega-
tive embedding method also leads to a more accurate attention
map as described in Fig. 3. Note that our method significantly
reduces the false positives in Fig. 3.

4. CONCLUSION

We hypothesize and demonstrate that reducing the inter-slide
bias and learning a compact negative embedding improve the
predictive performance of the MIL algorithm. To this end, we
use the implicit labels of negative WSIs and compress their
instance embeddings to a single negative center. Through ex-
periments, we confirm that our method effectively reduces the
inter-slide bias and creates compact negative embeddings by
showing the standard deviation difference between positive
and negative WSIs (Fig. 2).
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