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ABSTRACT
This paper presents NOMAD (Non-Matching Audio Distance), a
differentiable perceptual similarity metric that measures the distance
of a degraded signal against non-matching references. The proposed
method is based on learning deep feature embeddings via a triplet
loss guided by the Neurogram Similarity Index Measure (NSIM) to
capture degradation intensity. During inference, the similarity score
between any two audio samples is computed through Euclidean dis-
tance of their embeddings. NOMAD is fully unsupervised and can
be used in general perceptual audio tasks for audio analysis e.g. qual-
ity assessment and generative tasks such as speech enhancement and
speech synthesis. The proposed method is evaluated with 3 tasks.
Ranking degradation intensity, predicting speech quality, and as a
loss function for speech enhancement. Results indicate NOMAD
outperforms other non-matching reference approaches in both rank-
ing degradation intensity and quality assessment, exhibiting com-
petitive performance with full-reference audio metrics. NOMAD
demonstrates a promising technique that mimics human capabilities
in assessing audio quality with non-matching references to learn per-
ceptual embeddings without the need for human-generated labels.

Index Terms— Perceptual measures of audio quality; objective
and subjective quality assessment; speech enhancement

1. INTRODUCTION

Objective speech and audio quality assessment techniques include
full-reference metrics [1, 2, 3, 4], using both degraded and clean
signals, and no-reference metrics [5, 6, 7, 8, 9] that predict mean
opinion scores (MOS) from the degraded signal only. No-reference
metrics overcome issues of full-reference metrics, like sensitivity
to imperceptible differences between degraded and reference sig-
nals [4], as well as the lack of need for a reference signal. However,
no-reference metrics assume absolute quality, as MOS is given with-
out a reference, using the absolute category rating (ACR) scale [10],
which is calibrated with anchors. Yet, MOS distributions remain
relative due to biases [11] and stimulus dependence. We observe
that merging MOS databases for no-reference metrics is uncommon
due to label space differences; MOS of 4.0 has different meanings
across databases. In [12] it has been noticed that no-reference mod-
els would need to learn the hidden references used by raters when
judging quality which can be very challenging. To solve this, [12]
proposed NORESQA which measures the perceived quality of a de-
graded signal against non-matching references i.e. using any clean
speech signal, not necessarily the clean counterpart of the degraded
signal. The advantage of non-matching references is twofold: the
clean counterpart is not required and quality can be measured rel-
atively to any other signal. If any clean speech is used as a non-
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matching reference, then absolute quality is measured. This ap-
proach reflects the higher capacity of humans in sensory judgement
when comparing stimuli instead of absolute quality [13].

In this work, we introduce NOMAD (Non-Matching Audio
Distance), a perceptual differentiable audio metric that operates
with any non-matching reference. Our method creates an embedding
space where signals with similar degradation intensity are close. We
employ the triplet loss [14], a popular contrastive approach in com-
puter vision for metric learning, to achieve this. We use degradation
intensity as a label, which is linked to quality, and programmat-
ically controlled without relying on human labels. However, the
challenge with degradation intensity parameters is their lack of com-
parability across different degradations. To address this, we propose
to use the Neurogram Similarity Index Measure (NSIM) [15], a
spectro-temporal similarity between degraded and clean signals
ranging from 0.0 to 1.0. A non-matching reference metric must
be reference-invariant, consistently producing the same score for a
degraded signal regardless of the clean signal used for comparison.
We attain this by training a feature space invariant to speaker and
sentence characteristics, using the self-supervised learning (SSL)
model wav2vec 2.0 [16], which has proven efficacy across diverse
downstream tasks with distinct variational factors [17, 18, 19].

NOMAD can be used in diverse applications: quality predic-
tion, perceptual audio retrieval, parallel and non-parallel speech en-
hancement, and waveform synthesis like text-to-speech. We evalu-
ate NOMAD’s performance in three tasks: ranking degradation in-
tensity, speech quality assessment, and speech enhancement training
loss. The PyTorch code, pip package, and dataset generation code
for training and validation are available on GitHub1.

2. PROPOSED METHOD

Our approach relies on the assumption that audio quality is linked
to degradation intensity. We aim to develop a similarity metric that
captures degradation intensity in degraded audio, irrespective of fac-
tors like speaker or sentence attributes in speech. Let us start by
considering a scenario with a single degradation type, such as back-
ground noise. We can model degradation using a function denoted
as h(·, α). When applied to clean speech x, this function generates
a signal with degradation intensity depending on a scalar parameter,
α e.g., SNR. Given two values αi and αj , along with the corre-
sponding degraded samples xi = h(x, αi) and xj = h(x, αj), the
degradation parameter can be used as a label2 to learn a similarity
function D(·, ·) that follows the constraint:

αi > αj =⇒ D(x,xi) > D(x,xj) (1)

The idea is to induce a semantic order in the feature space based
on the level of degradation. Using only one degradation is limit-
ing for generalization. A perceptual audio similarity metric should

1https://github.com/alessandroragano/nomad
2The direction of α depends on the type of degradation.

https://github.com/alessandroragano/nomad


be able to capture information from multiple degradations. Let us
consider the case where the clean speech x is perturbed with two
different degradations producing two signals xa = ha(x, α) and
xb = hb(x, β). In this scenario, each degradation is controlled by
a single scalar parameter and it is not possible to establish an order
between the two parameters such that α > β =⇒ D(x,xa) >
D(x,xb).

In order to establish cross-degradation similarity with respect to
to the clean reference we propose to use the NSIM [15] which is
a spectro-temporal measure of similarity between a degraded signal
and its clean counterpart and it has been proven to model human
speech quality perception [1]. The NSIM is a score between 0.0 and
1.0 relative to the reference signal defined as:

Q(r, d) =
2µrµd + C1

µ2
r + µ2

d + C2
· σrd + C3

σr · σd + C3
. (2)

Here, r represents the clean speech spectrogram, and d denotes the
degraded spectrogram. The NSIM relies on statistical measures: µr

and σr are the mean and standard deviation of the reference spectro-
gram, while µd and σd are the mean and standard deviation of the de-
graded spectrogram. Additionally, σrd denotes the cross-correlation
between the reference and degraded spectrogram. The constant val-
ues C1 = 0.01L and C2 = C3 = (0.03L)2 are determined based
on the intensity range L of the reference spectrogram and used for
boundary conditions [1].

By employing the NSIM, we gain the capability to compare mul-
tiple degradations, leading to the formulation of Equation 3:

NSIMa > NSIMb =⇒ D(x,xa) < D(x,xb) (3)

In this equation, xa denotes the signal obtained using degradation a,
while xb is obtained from another degradation b. The constraint im-
plies that xa must be closer to x than xb since the NSIM of degra-
dation a is higher. In the following section, we illustrate how the
NSIM can be leveraged to learn a perceptual distance function that
is cross-reference, even though the NSIM is a score relative to the
same reference signal.

2.1. Loss Function

To model a perceptual similarity metric as formulated in Equation 3
we employ the triplet margin loss function [14], supervised by the
order of the NSIM scores. The triplet loss function is commonly
used for deep metric learning and it is formulated as follows:

N∑
i

max
(
0, ||f(xa

i )− f(xp
i )||

2
2 − ||f(xa

i )− f(xn
i )||22 +m

)
(4)

Here, xa
i , xp

i , and xn
i represent anchor, positive, and negative sam-

ples respectively and f(·) is the neural network producing the em-
beddings. The goal of the triplet loss is to make the squared Eu-
clidean distance between the anchor-positive pair smaller and in-
crease the distance between the anchor-negative pair by a specified
margin m.

The training process includes triplet sampling. As we lack cat-
egorical labels like ya = yp and ya ̸= yn for relationships, we ob-
serve that the concept of “closeness” is relative in regression prob-
lems. For instance, someone 180 cm tall is closer to 170 cm than
200 cm. Similarly, an NSIM of 0.90 is closer to 0.88 than to 0.99.
Our method employs NSIM space to represent ”closeness” between
speech samples. This develops feature embeddings capturing sim-
ilarities among speech samples with similar NSIM and thus close
degradation intensity. At test time, we measure the similarity score
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Fig. 1: Easy sampling strategy (above). The conditions that have
distance |Qk,m −Qa| lower than |Qp −Qa|+ s are excluded. Hard
sampling strategy (below). The negative is the one with the shortest
distance from the anchor after the positive.

between embeddings using the Euclidean distance. The challenge
of triplet sampling, crucial for the triplet loss to work [14], is ad-
dressed in the next section. Our approach does not aim to predict
exact NSIM scores as they are relative to the reference signal used.
Predicting NSIM would prevent comparing signals from different
sources.

2.2. Sampling Strategy

Large batch sizes are required to find harder triplets in the embed-
ding space e.g. 1800 [14]. To avoid memory issues with large deep
models we combine two different sampling strategies called easy
and hard sampling not requiring large batch sizes since we do not
use the embedding space. Initial experiments yielded better results
than using only one of them. Our strategy is based on the idea that
harder triplets can be identified with the NSIM. Intuitively, the larger
the NSIM between two samples, the easier is the task since the same
reference is used in the triplet.

For a clean speech file x, we consider the sample set Px =
(xk,m, Qk,m) which includes degraded versions of x perturbed by
M degradations at K levels and their corresponding NSIM value
Qk,m. We sample a clean file x and an anchor (xa, Qa) from Px.
The positive is the sample with the closest NSIM score to the anchor:
Qp = arg,min (k,m)|Qk,m −Qa|. Easy and hard sampling differ
in negative selection. In easy strategy, the negative is sampled from
N = {(k,m), |Qk,m −Qa| > |Qa −Qp|+ s}. The set of negative
samples N includes all the samples of Px where the NSIM scores
are more distant from the anchor Qa than the positive Qp by at least
a margin s. Hard approach picks the closest sample to anchor after
the positive: Qn = arg,min (k,m)|Qk,m − Qa| > |Qp − Qa|
which is the hardest negative to contrast. See Figure 1 for easy and
hard sampling illustrations.

2.3. Architecture

In the method outlined, each triplet uses a distinct reference, but
within each triplet, the anchor, positive, and negative samples all
come from the same reference (Figure 2). Contrasting degraded
samples from the same reference rather than dissimilar ones during
training helps create an embedding space that captures degradation
levels, facilitating the use of non-matching references.

To illustrate this, consider a triplet with the same degradation,
like adding background noise linearly to clean speech x with inten-
sity α, yielding noisy speech y = x+αs. Here, α has three distinct
scalar parameters: a for the anchor, p for the positive, and n for the
negative example. The goal is to obtain an embedding space where
content and degradation are disentangled as they are in the waveform
space, making Equation 4: ||(x+as)− (x+ps)||22 −||(x+as)−
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Fig. 2: Overview of the proposed method NOMAD.

(x+ns)||22+m. This objective is facilitated if we use the same clean
speech x. Indeed, during training the model is forced to cancel out
the clean component which is the common part between the 3 sig-
nals and to rely on the residual between both pairs anchor-positive
and anchor-negative respectively to minimize the loss. To achieve
this, a feature representation model is needed that can disentangle
factors like content and degradation, ensuring that samples with sim-
ilar degradation levels are close in the embedding space. Attenuat-
ing the clean component is not trivial since degradations are usually
more complex than a sum between two signals e.g. convolution in
reverberated speech. To this end, we propose using the pre-trained
BASE wav2vec 2.0 model [16]. It consists of 7 convolutional lay-
ers followed by 12 transformer layers, yielding a 768-dimensional
feature vector per time frame. We take the average over the time
dimension at the final transformer layer, followed by a ReLU + 256-
dimensional embedding layer. Embeddings are L2 normalized as
described in [14]. We emphasize that constructing triplets from the
same reference and utilizing the pre-trained wav2vec 2.0 model are
crucial to achieving the results shown below. We tested models built
from scratch and triplets with negative examples from different ref-
erences, but both led to decreased performance.

2.4. Usage

NOMAD embeddings can be used as follows. Given a de-
graded recording xtest and a non-matching clean reference xnmr

we calculate the euclidean distance between the embeddings as
NOMAD(xtest, xnmr) = ||f(xtest) − f(xnmr)||2 where f(·) is
the model producing perceptual embeddings. NOMAD scores may
vary based on the reference used. To minimize variability we calcu-
late the mean on a large set of I non-matching references xi

nmr as
follows: NOMAD(xtest, x) =

1
I

∑I
i=1 NOMAD(xtest, x

i
ref ).

3. PERFORMANCE EVALUATION

3.1. Experimental Setup

Training and validation sets of NOMAD are created from the Lib-
rispeech [20] partition train-clean-100 which consists of ≈
100 hours of English clean speech spoken by 125 female speakers
and 126 male speakers and recorded at 16 kHz. We choose M = 4
perturbations: speech clipping, background noise, Opus, and mp3
codecs. Each perturbation is generated at K = 5 levels. Speech
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Fig. 3: Validation set conditions sorted by the NOMAD scores ( ).

clipping is generated by choosing the percentage of samples to clip
in the waveforms with 5%, 10%, 25%, 40%, 60%. Background noise
is controlled with the amount of noise injected in the clean signal
with 0, 8, 15, 25, and 40 db SNR. Noise files are randomly extracted
from the training set of the MS-SNSD dataset [21]. Speech codecs
mp3 and Opus are generated with the following conditions: 8, 16,
32, 64, and 128 kbps. Both easy and hard sampling subsets are cre-
ated using ≈ 8000 triplets which are split into 80% training and
20% validation. Training and validation do not overlap in terms of
clean speech sources and they include the same conditions. For the
easy sampling we set the hyperparameter s = 0.05 to avoid negative
samples that are too close to the positive as illustrated in Figure 1.
The margin m in the triplet loss is set to 0.2. The NSIM values are
calculated from the ViSQOL v3 model [22] which outputs patch-
wise scores. To get utterance-level scores, the average of all patch
NSIM scores is computed. During training we freeze the convo-
lutional layers, finetune the transformer layers with a learning rate
equal to 0.00001 and the embedding layer with a learning rate set to
0.0001. Both learning rates decay exponentially with a decay factor
of 0.9 every 20 epochs without improvement. The batch size is set to
8. Training is stopped when the triplet loss does not decrease on the
validation set for 200 epochs. All the non-matching reference model
scores are calculated using a sample of ≈ 900 clean speech sources
from the TSP database [23]. Recordings are downsampled to 16 kHz
and the 4 speakers that are used in the TCD-VoIP database [24] are
excluded since it is one of the test databases that we use below.

3.2. Degradation Monotonicity

A descriptive examination is done on the validation set, depicted
in Figure 3. Here, we display averaged NOMAD scores, ordered
from low (closer to non-matching clean speech) to high (more dis-
torted). NOMAD ranks all validation conditions except clipping,
demonstrating its performance and adaptability to non-matching ref-
erences. We investigate unseen conditions and degradations. We as-
sess degradation monotonicity concerning intensity and quality us-
ing Spearman’s rank correlation coefficient (SC). For ranking degra-
dation parameters, we create an artificial test set from the Lib-
rispeech partition test-clean. This includes 26 unseen condi-
tions for mp3 and Opus, 20 for clip, and 25 for background noise,
drawn from the MS-SNSD [21] test set. To assess out-of-domain
degradations, we create 30 conditions of reverberated speech using
the SoX audio effects library [25] and 6 conditions using the Vorbis
codec. Every degraded sample is created from a distinct clean source
file. Scores are calculated using clean speech sources from the TSP
database as non-matching references. We compare NOMAD with
2 baselines; the average over the last transformer layer of the pre-
trained BASE model wav2vec 2.0 and NORESQA, summarized in
Table 1. Results show NOMAD outperforms in most conditions, ex-
cept clipping, where wav2vec 2.0 ranking is better. This highlights
wav2vec 2.0’s suitability as a pre-trained model for NOMAD, with
our approach contributing to NOMAD’s superior performance.



Table 1: SC using degradation intensity and quality.

Ranking Intensity Ranking Quality, TCD-VoIP
NOISE OPUS MP3 CLIP VORB. REV. CLIP NOISE ECHO CHOP CSPKR

NOMAD -0.74 -0.68 -0.73 0.89 -0.83 0.89 -0.98 -0.70 -0.84 -0.86 -0.82
w2v -0.73 -0.42 -0.54 0.92 0.03 0.87 -0.93 -0.79 -0.76 -0.33 -0.66
NORESQA -0.41 -0.20 -0.45 0.64 -0.77 0.81 -0.52 -0.18 -0.01 -0.37 -0.52

Table 2: PC and SC of non-matching reference (NMR) and full-
reference (FR) models.

P23 EXP 1 P23 EXP 3 TCD-VoIP GENSPEECH
Type Model PC SC PC SC PC SC PC SC
NMR NOMAD -0.85 -0.88 -0.85 -0.75 -0.64 -0.64 -0.94 -0.90

w2v -0.26 -0.27 -0.38 -0.36 -0.39 -0.54 -0.67 -0.90
NORESQA -0.24 -0.20 -0.46 -0.23 -0.11 -0.14 -0.69 -0.69

FR NOMAD FR -0.86 -0.87 -0.86 -0.73 -0.63 -0.65 -0.96 -0.90
CDPAM -0.48 -0.35 -0.39 -0.37 -0.76 -0.79 -0.93 -0.90
ViSQOL 0.87 0.89 0.78 0.67 0.74 0.76 0.64 0.74
WARP-Q -0.88 -0.92 -0.87 -0.79 -0.90 -0.92 -0.89 -0.90
PESQ 0.91 0.96 0.87 0.87 0.91 0.91 0.49 0.52

While ranking by degradation intensity has its limitations, as
it may not always reflect perception, we conduct a degradation-
wise evaluation against MOS using the TCD-VoIP database, which
includes both seen and unseen degradations. Table 1 confirms
NOMAD’s perceptual ranking ability, surpassing wav2vec 2.0 and
NORESQA in all degradations except background noise.

3.3. Speech Quality Assessment

We evaluate NOMAD for speech quality assessment using Pearson’s
correlation coefficient (PC) and SC of the NOMAD score against
MOS. We consider 4 different speech MOS databases that cover a
broad range of degradations. The ITU-T Supplement 23 to the P se-
ries of the ITU-T Recommendations Experiment 1 (P23 EXP1) and
Experiment 3 (P23 EXP3) [26] are used to evaluate various codecs
and an 8 kbps codec under different channel degradations respec-
tively. The TCD-VoIP database is used to test typical degradations
occurring in VoIP communications [24]. The Genspeech database
includes parametric and generative codecs presenting differences
such as slight pitch shift and microalignments which are impercep-
tible but penalized by full-reference metrics (ViSQOL, PESQ) [4].
The results aggregated per condition (Table 2) show that NOMAD
outperforms both NORESQA and the wav2vec 2.0 features and ex-
hibits competitive results with full-reference metrics. Our method
shows high invariance to clean speech demonstrated by the very
close correlation scores between the non-matching reference NO-
MAD version and the full-reference mode (NOMAD FR) where we
only used the clean counterpart as a reference.

3.4. Speech Enhancement

We evaluate NOMAD loss for the speech enhancement task us-
ing the model DEMUCS [27] following a similar approach of [3].
We train three models using the Valentini speech dataset (28 speak-
ers) [28]; (1) The original DEMUCS trained from scratch using L1
loss between waveforms and multi-resolution STFT [27]; (2) MT
NOMAD combines the losses of DEMUCS with the NOMAD loss
in a multitask fashion; (3) FT NOMAD is based on finetuning the
pretrained DEMUCS model in (1) using the NOMAD loss only. The
NOMAD loss is computed as the sum of the L1 distance between
clean speech and the estimated speech of each transformer layer and
the embedding layer for every time frame. The frame-wise approach
is preferred for this task to encourage a local reconstruction that
might be lost in the final embedding layer. Every model is trained
for 110 epochs with batch size set to 8. For testing, the best model is

Table 3: Speech enhancement performance evaluation.

PESQ↑ MUSHRA↑
2.5 7.5 12.5 17.5 2.5 7.5 12.5

Noisy 1.42 1.76 2.10 2.60 20 (10,52) 30 (19,65) 46 (20,82)
Demucs (Baseline) 2.40 2.83 3.06 3.31 58 (39,78) 78 (51,90) 84 (58,90)
FT Nomad (Ours) 2.43 2.88 3.14 3.42 70 (50,82) 80 (50,90) 88 (57,91)
MT Nomad (Ours) 2.42 2.84 3.10 3.36 72 (58,84) 90 (63,94) 90 (71,95)

taken as the one with the lowest validation loss. The validation par-
tition is created by leaving out 2 speakers from the Valentini training
set as mentioned in the DEMUCS repo [27]. Results are evaluated on
the Valentini test set with PESQ and a listening test. PESQ is com-
puted on the entire test set which includes 824 noisy speech samples
at four SNR values 2.5, 7.5, 12.5, 17.5 dB, 1 male and 1 female
speaker, and 5 noise types. A MUSHRA test is conducted with 12
samples, distributed in 4 recordings for 3 SNR values. For each SNR
we take 2 male speaker and 2 female speaker samples and 4 noise
types. In each MUSHRA session, we use 5 stimuli: noisy sample
(anchor), clean (hidden reference), and three enhanced versions from
DEMUCS, FT NOMAD, and MT NOMAD respectively. Listeners
could also play the clean reference to compare. We recruited 16 peo-
ple for the listening test using the online platform Go listen [29]. We
asked raters to indicate their knowledge of audio as follows; 80% as
professionals working in the area of audio, 20% as audio enthusiasts,
and 0% rarely paying attention to audio quality. Post-screening was
done as indicated in the MUSHRA guidelines [30]. We removed
3 participants who judged the hidden reference under 90 for more
than 15% of samples. Further, we removed another participant (au-
dio enthusiast) who scored 0 on all enhanced models. In Table 3, for
each SNR value we report the average PESQ, and the median and
interquartile range for the MUSHRA test as recommended in [30].
Results indicate that both approaches improve over the baseline for
both metrics. An inconsistency can be noted between subjective and
objective scores i.e., MT NOMAD exhibits the highest MUSHRA
scores while FT NOMAD shows the highest PESQ scores. The
MOS predictions from PESQ for the samples used in the subjective
study had a high correlation (SC=0.89) with the subjective scores.
This speech enhancement study further demonstrates that NOMAD
embeddings encode perceptual similarity and that they can also be
applied to generative tasks. A potential future application to further
showcase the versatility of NOMAD embeddings is in non-parallel
speech enhancement, where any clean signal can serve as the ground
truth.

4. CONCLUSIONS

We proposed NOMAD, a non-matching reference perceptual simi-
larity metric that can be used for perceptual audio tasks. Future work
will further analyse the role of wav2vec 2.0 in NOMAD. Its use is
supported by its capacity to disentangle variational factors in speech
and its superior performance compared to a model we trained from
scratch. NOMAD outperforms other models in the task of ranking
degradations and audio quality prediction with non-matching clean
references. We observe that the fixed dimension of NOMAD em-
beddings helps in solving issues of microalignment of generative
neural codecs, which is a known problem of full-reference metrics
(ViSQOL, PESQ). Objective and subjective experiments show that
NOMAD can be used as a perceptual loss for speech enhancement
to further improve speech quality. Beyond the evaluated tasks, we
believe that the proposed model could be used for many other gen-
erative tasks such as text-to-speech, as a feature extractor for no-
reference quality metrics and to measure quality relative to any ref-
erence chosen.
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