

Training Generative Adversarial Network-Based Vocoder with Limited Data Using Augmentation-Conditional Discriminator Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka **NTT Corporation, Japan**

Audio samples

Introduction

1. Target of this study: GAN vocoder

Text-to-speech synthesis (Text \rightarrow Waveform)

GAN vocoder

4 Proposal: AugCondD

Assess speech with considering augmentation state

AugCond *D* is **conditioned on** augmentation state

 $\mathcal{L}_{\mathrm{Adv}}(D) = \mathbb{E}_{(\tilde{x}_r, \tilde{s}_r, \mu)} [(D(\tilde{x}_r, \mu) - 1)^2 + (D(G(\tilde{s}_r), \mu))^2]$ $\mathcal{L}_{\mathrm{Adv}}(G) = \mathbb{E}_{(\tilde{s}_r,\mu)}[(D(G(\tilde{s}_r),\mu) - 1)^2]$

Distinguish augmented speech with original non-augmented speech

Waveform E.g., mel-spec. E.g., mel-spec.

2. Objective: Train GAN vocoder with limited data

GAN vocoder requires a large amount of training data (e.g., > 10 h) Problem

Objective Reduce the amount of training data (e.g., \approx 10 min)

3. Key idea: Augmentation-conditional discriminator

(a) Standard discriminator

Assess speech *without* considering (extraordinary) augmentation state

5 Experiments

1. Investigation of benchmark performance

Dataset: LJSpeech (Single English speaker) [Ito&Johnson2017]

- 100% (sufficient data): 23.7 h - 1% (limited data): 14.4 min

Evaluation metrics:

- MOS↑: Mean opinion score on naturalness (from 1 (bad) to 5 (excellent))
- UTMOS↑: Predicted mean opinion score [Saeki+2022]
- **Periodicity** : Distance in periodicity [Morrison+2022]
- $cFW2VD\downarrow$: Distribution distance in wav2vec 2.0 [Kaneko+2022]

Data augmentation: mixup [Zhang+2018]: $\tilde{x}_r = mx_r^1 + (1-m)x_r^2$ $(m \sim U(0,1))$ **Compared models:**

- HiFi [Kong+2020]: HiFi-GAN
- HiFi-phase [Lee+2023]: HiFi-GAN + PhaseAug
- HiFi-mix: HiFi-GAN (standard D) + mixup
- HiFi-ACD-mix: HiFi-GAN + *AugCondD* + mixup

Model	Data	$\mathbf{MOS}\uparrow$	$\mathbf{UTMOS}\uparrow$	$\mathbf{Periodicity}{\downarrow}$	$\mathbf{cFW2VD}\downarrow$
Ground truth		$4.69 {\pm} 0.07$	4.38		
HiFi	100%	4.48 ± 0.08	4.23	0.106	0.022
HiFi-phase	100%	$4.49{\pm}0.08$	4.23	0.105	0.023
HiFi-mix	100%	$4.35{\scriptstyle \pm 0.09}$	4.19	0.108	0.023
HiFi-ACD-mix	100%	$4.42{\scriptstyle\pm0.09}$	4.23	0.107	0.020
HiFi	1%	$2.89{\pm}0.12$	3.47	0.168	0.090
HiFi (early stopped)	1%	$3.53{\pm}0.12$	3.75	0.143	0.079
HiFi-phase	1%	$3.01{\pm}0.12$	3.46	0.166	0.091
HiFi-phase (early stopped)	1%	$3.62{\scriptstyle \pm 0.12}$	3.71	0.143	0.073
HiFi-mix	1%	$3.88{\pm}0.11$	3.83	0.125	0.047
HiFi-ACD-mix	1%	4.25 ± 0.10	4.00	0.117	0.036

Preliminaries

1. GAN vocoder

Train vocoder that can synthesize waveform resembling real waveform

2. Data augmentation for GAN vocoder

Two data augmentation strategies can be considered

S2 was adopted because data augmentation for G and D is more effective

1. AugCondD has no adverse effects under sufficient data conditions (100%) 2. AugCondD improves speech quality under limited data conditions (1%)

2. Investigation of general utility

The same tendencies are observed in the following cases:

1. With different vocoders (HiFi-GAN V2 [Kong+2020], iSTFTNet [Kaneko+2022])

Model	Data	$\mathbf{UTMOS}\uparrow$	$\mathbf{Periodicity} \downarrow$	$\mathbf{cFW2VD}{\downarrow}$
HiFiV2-mix HiFiV2-ACD-mix	$1\% \\ 1\%$	$3.73 \\ 3.81$	$0.137 \\ 0.128$	$0.068 \\ 0.052$
iSTFT-mix iSTFT-ACD-mix	$1\% \\ 1\%$	$3.82 \\ 3.99$	$0.121 \\ 0.118$	$0.049 \\ 0.037$

2. With different data augmentation (speaking rate change [Kharitonov+2021])

Limitation of standard discriminator 3

Assess speech without considering augmentation state

Standard discriminator is *unconditional* and *agnostic* to data augmentation

 $\mathcal{L}_{\mathrm{Adv}}(D) = \mathbb{E}_{(\tilde{x}_r, \tilde{s}_r, \mu)} [(D(\tilde{x}_r) - 1)^2 + (D(G(\tilde{s}_r)))^2]$ $\mathcal{L}_{\mathrm{Adv}}(G) = \mathbb{E}_{(\tilde{s}_r,\mu)}[(D(G(\tilde{s}_r)) - 1)^2]$

May consider augmented (extraordinary) speech as desired real speech

Model	Data	$\mathbf{UTMOS}{\uparrow}$	$\mathbf{Periodicity} \downarrow$	$\mathbf{cFW2VD}{\downarrow}$
HiFi-rate	1%	3.56	0.167	0.090
HiFi-ACD-rate	1%	4.10	0.117	0.033

3. For different speaker (male speaker (9.1 min) in LibriTTS [Zen+2019])

Model	Data	$\mathbf{UTMOS}{\uparrow}$	$\mathbf{Periodicity} \downarrow$	$\mathbf{cFW2VD}{\downarrow}$
HiFi-mix	$9.1 \min$	3.51	0.150	0.105
HiFi-ACD-mix	$9.1 \min$	3.66	0.140	0.074

6 Conclusions

- AugCondD was proposed to train GAN vocoder with *limited data*
- Experimental results indicate general utility of AugCondD
- Simplicity & versatility of AugCondD facilitates its application to various tasks