
Learning a Low-Rank Feature Representation:

Achieving Better Trade-Off Between Stability and Plasticity

in Continual Learning

Zhenrong Liu1,2, Yang Li3, Yi Gong1, and Yik-Chung Wu2

Presenter: Yang Li3

Apr. 2024

1 Southern University of Science and Technology, Shenzhen, China
2 The University of Hong Kong, Hong Kong

3 Shenzhen Research Institute of Big Data, Shenzhen, China

1

What is continual learning?

2

◼ Continual learning is the ability of a model to learn from a stream of data

◼ Each batch may differ significantly from the previous one

◼ A DNN model must adapt to new subjects, one after another, without

forgetting the old ones (also, what we aim to achieve with our approach)

Dataset

𝐷1

Dataset

𝐷𝑡

DNN Model

Dataset

𝐷𝑇

Current Task

… …

Training

Changing

Distributions

Why we need continual learning？

3

◼ The need for continual learning arises because, in real-world applications,

data evolves over time

• For instance, consider a facial recognition system that must adapt to

new looks without forgetting old ones

◼ Traditional DNN models struggle with this, as retraining them on the

entire dataset periodically is not only resource-intensive but also

impractical

Two core concepts in continual learning: stability and plasticity

4

◼ Stability: the model's ability to retain what it has learned from previous

tasks

• Without stability, a DNN is like a student who forgets everything

learned in the previous term when a new term starts (this phenomenon

is also known as catastrophic forgetting)

◼ Plasticity: the model's capacity to learn new tasks and adapt to changes

Understanding and balancing these two aspects is key to our research,

as it allows us to create models that are both knowledgeable of the

past and adaptable to the future.

How to achieve stability?

5

Motivation: after the t-th training episode, our DNN, denoted by

is expected to perform well on all the previous datasets

Dataset

𝐷1

Dataset

𝐷𝑡

Dataset

𝐷𝑇
… …

This can be guaranteed if

If this condition is satisfied, it ensures that the DNN retains the

knowledge from previous tasks without catastrophic forgetting.

6

Examine a single-layer MLP, which is a basic neural network model

𝑓 𝐱; 𝐖 = 𝐖T𝐱

◼ After the 1-sth training episode, the output of an input 𝐱1 is 𝐖1
T𝐱1

This leads to the condition: ∆𝐖2
T𝐱1 = 𝟎

How to guarantee the stability condition?

◼ After the 2-nd training episode, the parameter becomes 𝐖2 = 𝐖1 + ∆𝐖2

◼ To maintain the output for 𝐱𝟏 unchanged, we require that

(𝐖1+∆𝐖2)T 𝐱1 = 𝐖1
T𝐱1

How to guarantee the stability condition?

7

◼ Recall that we need the following condition to guarantee the output of 𝐱1

unchanged:

∆𝐖2
T𝐱1 = 𝟎

◼ When dealing with multiple samples from datasets , we can

represent the data as a feature representation matrix 𝐅𝑡−1, where each

column corresponds to a data sample

◼ To maintain the output across all data, the following condition must be met:

𝐅𝑡−1
T ∆𝐖𝑡 = 𝟎

How to guarantee the stability condition?

8

◼ Given the typically vast number of data samples, storing the entire

𝐅𝑡−1 matrix is not feasible. To alleviate the memory load, we store

𝐅𝑡−1∆𝐖𝑡 = 𝟎

𝐅𝑡−1 = 𝐅𝑡−1𝐅𝑡−1
T

◼ This leads us to an equivalent condition:

ത𝐅𝑡−1
𝑙 ∆𝐖𝑡

𝑙 = 𝟎

◼ Extend this condition to the case of multi-layer DNNs

• For the 𝑙-th layer of the DNN, the condition becomes:

This ensures that the updates to the parameters do not affect the output

for previous data across all layers of the DNN.

How to achieve plasticity?

9

◼ Plasticity is achieved when the parameter update ∆𝐖𝑡
𝑙 aligns with the

negative gradient of the loss with respect to 𝐖𝑡
𝑙, denoted as 𝐆𝑡

𝑙

◼ Mathematically, this is when their inner product is greater than zero:

< ∆𝐖𝑡
𝑙 , 𝐆𝑡

𝑙 > ≥ 0

◼ This condition means that ∆𝐖𝑡
𝑙 will decrease the training loss, allowing

the DNN to integrate new knowledge from the latest data

Trade-off between stability and plasticity

10

NULL ത𝐅𝑡−1
𝑙 = 𝑎𝑙 − RANK(ത𝐅𝑡−1

𝑙)

◼ To maintain stability, we restrict the parameter update within the null

space of the covariance matrix ത𝐅𝑡−1
𝑙 , i.e., ത𝐅𝑡−1

𝑙 ∆𝐖𝑡
𝑙 = 𝟎

◼ However, as the number of data increases, the dimension of the null space

decreases due to the increasing rank of ത𝐅𝑡−1
𝑙

row/column number of ത𝐅𝑡−1
𝑙

◼ This shrinking null space limits the options for ∆𝐖𝑡
𝑙 that can

satisfy the plasticity condition, i.e., < ∆𝐖𝑡
𝑙 , 𝐆𝑡

𝑙 > ≥ 0

By observing and understanding this trade-off, we can design DNNs

that are both robust to forgetting and adaptable to new information.

Proposed low-rank covariance approach

11

ത𝐅𝑡−1
𝑙 = ෍

𝑞=1

𝑡−1

𝐅𝑞
𝑙 𝐅𝑞

𝑙 T

◼ The key to improving the trade-off between stability and plasticity is to

decrease the rank of the feature covariance matrix ത𝐅𝑡−1
𝑙

NULL ത𝐅𝑡−1
𝑙 = 𝑎𝑙 − RANK(ത𝐅𝑡−1

𝑙)

◼ However, ത𝐅𝑡−1
𝑙 is generated by the DNN itself

◼ To construct a low-rank ത𝐅𝑡−1
𝑙 , we can construct a low-rank feature

representation matrix 𝐅𝑞
𝑙 at each training episode 𝑞

Feature representation matrix corresponding to the data in

Proposed low-rank covariance approach

12

◼ To construct a low-rank feature representation 𝐅𝑡
𝑙 during each training

episode 𝑡, the proposed approach involves two stages

Pretraining Training

induces the columns of the

weight matrix to become sparse

Aims to induce sparsity in the

weights of each layer

Prunes the DNN by setting the smaller weights

to zero and fine-tuning the larger weights

It is important to note that during both stages, weight parameter updates are

conducted by projecting the gradient onto the null space of ത𝐅𝑡−1
𝑙 , to ensure the

stability condition.

Proposed low-rank covariance approach

13

◼ Workflow of the t-th training episode

whose columns are the eigenvectors associated with the

zero singular values of ത𝐅𝑡−1
𝑙

Generate sparse weights

in each layer

The larger weights

are further fine-tuned

Input the dataset 𝑫𝒕 into the DNN to

derive the low-rank feature

representation and update ത𝐅𝑡
𝑙

14

Our code has been made open source on GitHub (https://github.com/Dacaidi/LRFR)

Simulation setup

◼ Dataset: 10-split-CIFAR-100, 20-split-CIFAR-100 and 25-split-TinyImageNet

◼ Architecture: Resnet-18 (Pre-Activation)

◼ Batch size: 32 (CIFAR), 16 (Tiny ImageNet)

◼ Learning Rate & Epoch: 5 × 10−5 , halving it at epochs 30 and 60 over 80 total

epochs.

◼ Penalty Parameter: 𝜇 = 0.1.

◼ Pruning Ratio: disable 50% neurons.

If details are not fully covered in this paper and presentation, you can download

our code to understand the specifics.

Simulation results

15

◼ In our simulation analysis, we measure the performance using two key

metrics:
• ACC (Average Classification Accuracy): reflects the overall accuracy of the model across all tasks

• BWT (Backward Transfer): indicates the model's ability to retain knowledge from previous tasks.

A higher BWT value means greater stability and less forgetting

Proposed

The proposed approach outperforms the benchmarks in both metrics across various datasets,

which demonstrates its effectiveness in achieving a balance between stability and plasticity.

Simulation results

16

• NSCL (Null Space Continual Learning): This is a vanilla null space projection

approach without using the low-rank feature representation as in our work

Test accuracy of the two approaches on the first three tasks in 10-split-CIFAR dataset

The proposed approach achieves much higher test accuracy and more stable, which

demonstrates the effectiveness of the proposed low-rank feature representation compared

with the vanilla null space projection approach.

Conclusions

17

◼ We began by introducing the two core concepts of stability and

plasticity in the realm of continual learning.

◼ We explored the inherent trade-off between these concepts,

highlighting the challenges they present in model training.

◼ In response to this trade-off, we proposed our novel Low-Rank

Feature Representation (LRFR) approach.

◼ Through simulations, we demonstrated that the proposed approach

outperforms state-of-the-art approaches with superior average

accuracy and robustness against forgetting.

18

Thank you very much！

Continual learning methods fall into the following four

categories:

19

Data Model OptimizerLoss

replay-based regularization-based architecture-based algorithm-based

Four elements of DNN training:

Low Rank ത𝐅𝑡−1
𝑙

20

…

…

…

…

…

…

… … … … … …

𝐅𝑞
𝑙 𝐅𝑞

𝑙 T
∈ ℝ𝑎𝑙×𝑎𝑙

𝑎1
𝑎2 𝑎3 𝑎4

𝑎1
𝑎2 𝑎3 𝑎4

Structure Pruning:

𝐅𝑞
𝑙 ∈ ℝ𝑎𝑙×𝑛𝑡

𝐅𝑞
𝑙 T

∈ ℝ𝑛𝑡×𝑎𝑙

Proposed Approach (LRFR):

21

◼ Each task 𝑡 training has two stages:

Pretraining Training

Find a optimal subnetwork Training this subnetwork

to update low rank ത𝐅𝑡
𝑙

DNN over-parameterized for each continual learning task

Selecting a subnetwork to learn a single task, as opposed to

using the entire network, does not affect training

performance (The Lottery Ticket Hypothesis[2])

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In

ICLR, 2019.

	幻灯片 1
	幻灯片 2: What is continual learning?
	幻灯片 3: Why we need continual learning？
	幻灯片 4: Two core concepts in continual learning: stability and plasticity
	幻灯片 5: How to achieve stability?
	幻灯片 6
	幻灯片 7: How to guarantee the stability condition?
	幻灯片 8: How to guarantee the stability condition?
	幻灯片 9: How to achieve plasticity?
	幻灯片 10: Trade-off between stability and plasticity
	幻灯片 11: Proposed low-rank covariance approach
	幻灯片 12: Proposed low-rank covariance approach
	幻灯片 13: Proposed low-rank covariance approach
	幻灯片 14
	幻灯片 15: Simulation results
	幻灯片 16: Simulation results
	幻灯片 17: Conclusions
	幻灯片 18
	幻灯片 19: Continual learning methods fall into the following four categories:
	幻灯片 20: Low Rank 粗体 大写 F bar 下标 左圆括号 t 减 1 右圆括号 ...次方 l
	幻灯片 21: Proposed Approach (LRFR):

