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What is continual learning?
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◼ Continual learning is the ability of a model to learn from a stream of data

◼ Each batch may differ significantly from the previous one

◼ A DNN model must adapt to new subjects, one after another, without 

forgetting the old ones (also, what we aim to achieve with our approach)
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Why we need continual learning？
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◼ The need for continual learning arises because, in real-world applications, 

data evolves over time

• For instance, consider a facial recognition system that must adapt to 

new looks without forgetting old ones

◼ Traditional DNN models struggle with this, as retraining them on the 

entire dataset periodically is not only resource-intensive but also 

impractical



Two core concepts in continual learning: stability and plasticity
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◼ Stability: the model's ability to retain what it has learned from previous 

tasks

• Without stability, a DNN is like a student who forgets everything 

learned in the previous term when a new term starts (this phenomenon 

is also known as catastrophic forgetting)

◼ Plasticity: the model's capacity to learn new tasks and adapt to changes

Understanding and balancing these two aspects is key to our research, 

as it allows us to create models that are both knowledgeable of the 

past and adaptable to the future.



How to achieve stability?
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Motivation: after the t-th training episode, our DNN, denoted by 

is expected to perform well on all the previous datasets
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This can be guaranteed if 

If this condition is satisfied, it ensures that the DNN retains the 

knowledge from previous tasks without catastrophic forgetting.
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Examine a single-layer MLP, which is a basic neural network model 

𝑓 𝐱; 𝐖 =  𝐖T𝐱

◼ After the 1-sth training episode, the output of an input 𝐱1 is 𝐖1
T𝐱1

This leads to the condition: ∆𝐖2
T𝐱1 = 𝟎

How to guarantee the stability condition?  

◼ After the 2-nd training episode, the parameter becomes 𝐖2 = 𝐖1 + ∆𝐖2

◼ To maintain the output for 𝐱𝟏 unchanged, we require that

(𝐖1+∆𝐖2)T 𝐱1 = 𝐖1
T𝐱1



How to guarantee the stability condition?  
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◼ Recall that we need the following condition to guarantee the output of 𝐱1 

unchanged:

∆𝐖2
T𝐱1 = 𝟎

◼ When dealing with multiple samples from datasets , we can 

represent the data as a feature representation matrix 𝐅𝑡−1, where each 

column corresponds to a data sample

◼ To maintain the output across all data, the following condition must be met:

𝐅𝑡−1
T ∆𝐖𝑡 = 𝟎



How to guarantee the stability condition?  
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◼ Given the typically vast number of data samples, storing the entire 

𝐅𝑡−1 matrix is not feasible. To alleviate the memory load, we store

𝐅𝑡−1∆𝐖𝑡 = 𝟎

𝐅𝑡−1 = 𝐅𝑡−1𝐅𝑡−1
T

◼ This leads us to an equivalent condition:

ത𝐅𝑡−1
𝑙 ∆𝐖𝑡

𝑙 = 𝟎

◼ Extend this condition to the case of multi-layer DNNs

• For the 𝑙-th layer of the DNN, the condition becomes:

This ensures that the updates to the parameters do not affect the output 

for previous data across all layers of the DNN.



How to achieve plasticity?  
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◼ Plasticity is achieved when the parameter update ∆𝐖𝑡
𝑙 aligns with the 

negative gradient of the loss with respect to 𝐖𝑡
𝑙, denoted as 𝐆𝑡

𝑙

◼ Mathematically, this is when their inner product is greater than zero:

< ∆𝐖𝑡
𝑙 , 𝐆𝑡

𝑙 > ≥ 0 

◼ This condition means that ∆𝐖𝑡
𝑙 will decrease the training loss, allowing 

the DNN to integrate new knowledge from the latest data



Trade-off between stability and plasticity

10

NULL ത𝐅𝑡−1
𝑙 = 𝑎𝑙 − RANK( ത𝐅𝑡−1

𝑙 )

◼ To maintain stability, we restrict the parameter update within the null 

space of the covariance matrix ത𝐅𝑡−1
𝑙 , i.e., ത𝐅𝑡−1

𝑙 ∆𝐖𝑡
𝑙 = 𝟎

◼ However, as the number of data increases, the dimension of the null space 

decreases due to the increasing rank of ത𝐅𝑡−1
𝑙

row/column number of ത𝐅𝑡−1
𝑙   

◼ This shrinking null space limits the options for ∆𝐖𝑡
𝑙 that can 

satisfy the plasticity condition, i.e., < ∆𝐖𝑡
𝑙 , 𝐆𝑡

𝑙 > ≥ 0 

By observing and understanding this trade-off, we can design DNNs 

that are both robust to forgetting and adaptable to new information.



Proposed low-rank covariance approach
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ത𝐅𝑡−1
𝑙 = ෍

𝑞=1

𝑡−1

𝐅𝑞
𝑙 𝐅𝑞

𝑙 T

◼ The key to improving the trade-off between stability and plasticity is to 

decrease the rank of the feature covariance matrix ത𝐅𝑡−1
𝑙  

NULL ത𝐅𝑡−1
𝑙 = 𝑎𝑙 − RANK( ത𝐅𝑡−1

𝑙 )

◼ However, ത𝐅𝑡−1
𝑙  is generated by the DNN itself

◼ To construct a low-rank ത𝐅𝑡−1
𝑙 , we can construct a low-rank feature 

representation matrix 𝐅𝑞
𝑙  at each training episode 𝑞

Feature representation matrix corresponding to the data in



Proposed low-rank covariance approach
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◼ To construct a low-rank feature representation 𝐅𝑡
𝑙 during each training 

episode 𝑡, the proposed approach involves two stages

Pretraining Training

induces the columns of the 

weight matrix to become sparse

Aims to induce sparsity in the 

weights of each layer

Prunes the DNN by setting the smaller weights 

to zero and fine-tuning the larger weights

It is important to note that during both stages, weight parameter updates are 

conducted by projecting the gradient onto the null space of ത𝐅𝑡−1
𝑙 , to ensure the 

stability condition.



Proposed low-rank covariance approach
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◼ Workflow of the t-th training episode

whose columns are the eigenvectors associated with the 

zero singular values of ത𝐅𝑡−1
𝑙

Generate sparse weights 

in each layer

The larger weights 

are further fine-tuned

Input the dataset 𝑫𝒕 into the DNN to 

derive the low-rank feature 

representation and update ത𝐅𝑡
𝑙
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Our code has been made open source on GitHub (https://github.com/Dacaidi/LRFR)

Simulation setup

◼ Dataset: 10-split-CIFAR-100, 20-split-CIFAR-100 and 25-split-TinyImageNet

◼ Architecture: Resnet-18 (Pre-Activation)

◼ Batch size: 32 (CIFAR), 16 (Tiny ImageNet)

◼ Learning Rate & Epoch: 5 × 10−5 , halving it at epochs 30 and 60 over 80 total 

epochs. 

◼ Penalty Parameter: 𝜇 = 0.1.

◼ Pruning Ratio: disable 50% neurons.

If details are not fully covered in this paper and presentation, you can download 

our code to understand the specifics.



Simulation results
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◼ In our simulation analysis, we measure the performance using two key 

metrics:
• ACC (Average Classification Accuracy): reflects the overall accuracy of the model across all tasks

• BWT (Backward Transfer): indicates the model's ability to retain knowledge from previous tasks. 

A higher BWT value means greater stability and less forgetting

Proposed

The proposed approach outperforms the benchmarks in both metrics across various datasets, 

which demonstrates its effectiveness in achieving a balance between stability and plasticity.



Simulation results
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• NSCL (Null Space Continual Learning): This is a vanilla null space projection 

approach without using the low-rank feature representation as in our work

Test accuracy of the two approaches on the first three tasks in 10-split-CIFAR dataset 

The proposed approach achieves much higher test accuracy and more stable, which 

demonstrates the effectiveness of the proposed low-rank feature representation compared 

with the vanilla null space projection approach.



Conclusions
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◼ We began by introducing the two core concepts of stability and 

plasticity in the realm of continual learning.

◼ We explored the inherent trade-off between these concepts, 

highlighting the challenges they present in model training.

◼ In response to this trade-off, we proposed our novel Low-Rank 

Feature Representation (LRFR) approach.

◼ Through simulations, we demonstrated that the proposed approach 

outperforms state-of-the-art approaches with superior average 

accuracy and robustness against forgetting.
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Thank you very much！



Continual learning methods fall into the following four 

categories:
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Data Model OptimizerLoss

replay-based regularization-based architecture-based algorithm-based

Four elements of DNN training:



Low Rank ത𝐅𝑡−1
𝑙
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Proposed Approach (LRFR):
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◼ Each task 𝑡 training has two stages:

Pretraining Training

Find a optimal subnetwork Training this subnetwork 

to update low rank ത𝐅𝑡
𝑙 

DNN over-parameterized for each continual learning task

Selecting a subnetwork to learn a single task, as opposed to 

using the entire network, does not affect training 

performance (The Lottery Ticket Hypothesis[2])

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In 

ICLR, 2019.
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