
1/20

Contrastive Learning for Regression on
Hyperspectral Data

Mohamad DHAINI 1,2, Maxime BERAR 1, Paul HONEINE 1,
Antonin VAN EXEM 2
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Introduction

Hyperspectral Data

Hyperspectral Sensor:

Spectral Data:
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Introduction

Contrastive Learning

How does Contrastive Learning Work ?
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Introduction

Objectives

⋆ Contrastive Learning Framework for regression on Hyperspectral Data
⋆ Augmentation techniques adequate for Hyperspectral Data
⋆ Validation on Synthetic and Real Hyperspectral Datasets
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Proposed Framework

Proposed Architecture

Proposed Method

Hyperspectral image X = [x1(λ), x2(λ), . . . , xN(λ)]⊤ ∈ RN×b , where λ is the
wavelength with b total number of wavelengths.

X̃ = Φtransform (X )

F̃ = Φw

(
X̃
)
and F = Φw (X )

Ŷ = gθ (F ) ∈ RN×s

Figure: Architecture of the proposed method.
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Spectral Augmentation Techniques

Spectral Augmentation

Challenges:

Incompatibility of geometric transformations, noise injection, and color distortions
with spectral domain

Used transformations should not create strong deformations to the original spec-
trums

→ We propose a set of 8 augmentations technique adequate for spectral domain.
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Spectral Augmentation Techniques

Spectral Augmentation

1 The Spectral Shift involves shifting the spectrum in the wavelength, such as

x̃(λ) = x(λ−∆) (1)
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Figure: Spectral Shift Transformation.



10/20

Spectral Augmentation Techniques

Spectral Augmentation

2 The Spectral Flipping involves reversing the order of spectral bands in a
spectrum according to the following:

x̃(λ) = x(λmin + λmax − λ). (2)

λmin and λmax : minimum and maximum wavelengths in the spectrum,
respectively.
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Figure: Spectral Flipping.
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Spectral Augmentation Techniques

Spectral Augmentation

3 The Scattering Hapke’s Model (Hapke 1981) :

x̃ =
ω

(1 + 2µ1
√
1− ω)(1 + 2µ2

√
1− ω)

, (3)

ω = 1−


√

µ4
0x

2 + (1 + 4µ2
0x)(1− x)− 2µ0x

1 + 4µ2
0x


2

(4)

ω: single scattering albedo of the material
µ1: cosine of the angle between incoming radiation and the normal to the surface
µ0: initial cosine angle of the incoming radiation.

1250 1500 1750 2000 2250
Bands [nm]

0.0

0.5

1.0

Re
fle

ct
an

ce

Scattering

Original Transformed

Figure: Spectral Scattering.
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Spectral Augmentation Techniques

Spectral Augmentation

4 The Atmospheric Compensation model (Uezato et al. 2016)

x̃ = x
Esun-gr µ1 + Esky

Esun-gr µ2 + Esky
, (5)

Esun−gr: solar radiance observed at the ground level
Esky: denotes the skylight.
µ1 and µ2: cosines of the angles between the surface normal and the direction of
the sun at each pixel and at the calibration panel, respectively.
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Figure: Example of Atmospheric Transformation.
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Spectral Augmentation Techniques

Spectral Augmentation

5 The Elastic Distortion consists in a displacement grid on the wavelength axis,
such as

x̃(λ) = x(λ+ ϵ(λ)) = x
(
λ+

NG∑
i=1

Aie
− (λ−λi )

2

2σ2

)
(6)
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Figure: Example of Elastic Transformation.
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Spectral Augmentation Techniques

Spectral Augmentation

6 The Band Erasure (Hu et al. 2021) randomly removing certain wavelength from
the spectral data.

7 The Band Permutation (Hu et al. 2021) involves randomly permuting the order
of the spectral bands.

8 The Nearest Neighbor (Wang et al. 2023) involves creating new synthetic samples
based on the average of the closest samples.
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Loss Function

Training Loss

Defining Positive Pairs:

Define for the i-th sample a ball Bi of radius r where the positive pair j is selected as
the following:

r ≥
∥∥∥y i − y j

∥∥∥
2
. (10)

Cross Entropy Based Loss:

The common contrastive loss used in most recent work is based on the cross entropy,
which can be written as

LContrastive = − 1

N

2N∑
i=1

∑
j∈Bi

log
exp

(
sim

(
f i , f j

)
/τ

)∑
k ̸∈Bi exp (sim (f i , f k) /τ)

(11)

sim(u, v) = uT v/(∥u∥∥v∥): cosine similarity between two vectors, and τ is a temper-
ature scalar.
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Loss Function

Training Loss

Regression Loss:

For training, the contrastive loss is combined with a standard mean squared error re-
gression loss according to the following:

LR =
1

N

N∑
i=1

∥∥∥y i − gθ

(
f i
)∥∥∥2 (12)

Ltotal = LR + α LContrastive (13)
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Results

Results on Synthetic Data

Synthetic Data:

Four random spectrums from USGS digital spectral library (Swayze et al. 1993)

Each spectrum is composed of 224 contiguous bands

A total of 100× 100 mixed pixels were generated with abundances following a
Dirichlet distribution.
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Figure: USGS Spectrums.
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Results

Results on Synthetic Data

Synthetic Data:

Four random spectrums from USGS digital spectral library (Swayze et al. 1993)

Each spectrum is composed of 224 contiguous bands

A total of 100× 100 mixed pixels were generated with abundances following a
Dirichlet distribution.

R2 MAE
Baseline (No Contrastive) 0.55± 0.004 0.073± 0.07
Band erasure (Hu et al. 2021) 0.62± 0.003 0.064± 0.05
Band Permutation (Hu et al. 2021) 0.63± 0.003 0.063± 0.05
Nearest Neighbor (Wang et al. 2023) 0.61± 0.004 0.065± 0.05
Scattering 0.64± 0.004 0.061± 0.06
Atmospheric 0.65± 0.004 0.059± 0.06
Flipping 0.62± 0.005 0.062± 0.07
Elastic 0.66± 0.003 0.058± 0.05
Shift 0.75± 0.003 0.053± 0.05

Table: Regression Results on Synthetic Data.
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Results

Results on Synthetic Data

Synthetic Data:

Four random spectrums from USGS digital spectral library (Swayze et al. 1993)

Each spectrum is composed of 224 contiguous bands

A total of 100× 100 mixed pixels were generated with abundances following a
Dirichlet distribution.

Figure: Error Distribution on Synthetic Dataset.
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Results

Results on Real Data

Real Data

Datasets provided by Tellux company, specialized in soil pollution analysis using
hyperspectral imaging (Dhaini et al. 2021)

10000 spectra with a spectral range [1130-2450 nm] containing hydrocarbon pol-
lution concentration ranging [0-20000 mg/kg]
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Figure: Tellux Datasets.
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Results

Results on Real Data

Real Data

Datasets provided by Tellux company, specialized in soil pollution analysis using
hyperspectral imaging (Dhaini et al. 2021)

10000 spectra with a spectral range [1130-2450 nm] containing hydrocarbon pol-
lution concentration ranging [0-20000 mg/kg]

R2 MAE
Baseline (No Contrastive) 0.45± 0.002 2274.04± 21.2
Band erasure (Hu et al. 2021) 0.54± 0.003 1620.22± 18.1
Band Permutation (Hu et al. 2021) 0.53± 0.003 1700.04± 20.5
Nearest Neighbor (Wang et al. 2023) 0.54± 0.003 1850.40± 34.5
Scattering 0.56± 0.003 1737.26± 18.2
Atmospheric 0.55± 0.002 1796.63± 16.1
Elastic 0.58± 0.002 1709.33± 18.3
Flip 0.59± 0.002 1708.52± 18.4
Shift 0.59± 0.002 1380.37± 16.5

Table: Regression Results on Real Data.
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Results

Results on Real Data

Real Data

Datasets provided by Tellux company, specialized in soil pollution analysis using
hyperspectral imaging (Dhaini et al. 2021)

10000 spectra with a spectral range [1130-2450 nm] containing hydrocarbon pol-
lution concentration ranging [0-20000 mg/kg]

Figure: Error Distribution on Tellux Data.
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Results

Combination Study

Methodology

Combine several transformations to increase robustness of feature extractor

To reduce the number of possible combinations of proposed transformations, we
propose an incremental evaluation technique

We start by taking the transformation that provided the best result (shift trans-
formation) and then we do all the 2-element combinations.
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Results

Combination Study

R2 ∆R2

Shift 0.7522 −
Shift + Atmospheric 0.7774 0.0252
Shift + Atmospheric + Scattering 0.7921 0.0147
Shift + Atmospheric + Scattering + Elastic 0.7922 0.0001

Table: Combination Study Results on Synthetic Data.

R2 ∆R2

Shift 0.59000 −
Shift + Atmospheric 0.60639 0.01639
Shift + Atmospheric + Elastic 0.61791 0.01152
Shift + Atmospheric + Elastic + Scattering 0.61793 0.00002

Table: Combination Study Results on Real Data.



18/20

Conclusion

1 Introduction

2 Proposed Framework

3 Spectral Augmentation Techniques

4 Loss Function

5 Results

6 Conclusion



19/20

Conclusion

Conclusion

Conclusions and Future Work

⋆ We highlighted the ability of using contrastive learning for regression tasks on
hyperspectral data

⋆ We proposed a set of spectral transformations adequate for hyperspectral data

Future Work

⋆ Combining the presented framework with domain adaptation frameworks to gen-
eralize knowledge to unseen domains.
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Appendix

6 The Band Erasure (Hu et al. 2021) randomly removing certain wavelength from
the spectral data.

x̃(λ) =

{
0, with probability p

x(λ), with probability 1− p
(7)

where p is the probability of erasing a band.
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Figure: Example of Band Erasure.
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Appendix

7 The Band Permutation (Hu et al. 2021) involves randomly permuting the order
of the spectral bands.

x̃(λ) = x(π(λ)), (8)

where π(λ) is a random permutation function.
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Figure: Example of Band Permutation.
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Appendix

8 The Nearest Neighbor (Wang et al. 2023) involves creating new synthetic samples
based on the average of the closest samples.

x̃ =
1

k

∑
x i∈B(x,r)

x i , (9)

where B(x , r) is the set of k closest points to x within the radius r .
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Figure: Example of Nearest Neighbor Transformation.
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