Contrastive Learning for Regression on Hyperspectral Data

Mohamad DHAINI ^{1,2}, Maxime BERAR ¹, Paul HONEINE ¹, Antonin VAN EXEM ²

¹LITIS Lab, Université de Rouen Normandie, Saint-Etienne-du-Rouvray, France ²TELLUX Company, Maromme, France

April 2024

- 2 Proposed Framework
- 3 Spectral Augmentation Techniques

4 Loss Function

- 2 Proposed Framework
- Spectral Augmentation Techniques
- 4 Loss Function

Hyperspectral Data

Hyperspectral Sensor:

Spectral Data:

□ > < @ > < \(\exp\) > < \(\exp\) > < \(\exp\) > < \(\exp\) =
 4/20

Contrastive Learning

How does Contrastive Learning Work ?

* Contrastive Learning Framework for regression on Hyperspectral Data

4 ロ ト 4 日 ト 4 王 ト 王 王 つ 9 0 6/20

- * Augmentation techniques adequate for Hyperspectral Data
- * Validation on Synthetic and Real Hyperspectral Datasets

4 Loss Function

Proposed Framework

Proposed Architecture

Proposed Method

• Hyperspectral image $X = [x^1(\lambda), x^2(\lambda), \dots, x^N(\lambda)]^\top \in \mathbb{R}^{N \times b}$, where λ is the wavelength with b total number of wavelengths.

•
$$\widetilde{X} = \Phi_{transform}(X)$$

•
$$\widetilde{F} = \Phi_w(\widetilde{X})$$
 and $F = \Phi_w(X)$

•
$$\hat{Y} = g_{\theta}(F) \in \mathbb{R}^{N \times s}$$

Figure: Architecture of the proposed method.

2 Proposed Framework

3 Spectral Augmentation Techniques

4 Loss Function

Spectral Augmentation

Challenges:

- Incompatibility of geometric transformations, noise injection, and color distortions with spectral domain
- Used transformations should not create strong deformations to the original spectrums

 \rightarrow We propose a set of 8 augmentations technique adequate for spectral domain.

Spectral Augmentation

The Spectral Shift involves shifting the spectrum in the wavelength, such as

$$\widetilde{x}(\lambda) = x(\lambda - \Delta) \tag{1}$$

Figure: Spectral Shift Transformation.

Spectral Augmentation

The Spectral Flipping involves reversing the order of spectral bands in a spectrum according to the following:

$$\widetilde{x}(\lambda) = x(\lambda_{\min} + \lambda_{\max} - \lambda).$$
(2)

 λ_{\min} and λ_{\max} : minimum and maximum wavelengths in the spectrum, respectively.

Figure: Spectral Flipping.

Spectral Augmentation

Intersection of the section of th

$$\widetilde{x} = \frac{\omega}{(1+2\mu_1\sqrt{1-\omega})(1+2\mu_2\sqrt{1-\omega})},\tag{3}$$

$$\omega = 1 - \left(\frac{\sqrt{\mu_0^4 x^2 + (1 + 4\mu_0^2 x)(1 - x)} - 2\mu_0 x}{1 + 4\mu_0^2 x}\right)^2 \tag{4}$$

 ω : single scattering albedo of the material

 μ_1 : cosine of the angle between incoming radiation and the normal to the surface μ_0 : initial cosine angle of the incoming radiation.

Figure: Spectral Scattering.

▲ 臣 ▶ 王 臣 ■ 9 Q Q

Spectral Augmentation

The Atmospheric Compensation model (Uezato et al. 2016)

$$\widetilde{x} = x \frac{E_{\text{sun-gr}} \mu_1 + E_{\text{sky}}}{E_{\text{sun-gr}} \mu_2 + E_{\text{sky}}},$$
(5)

 $E_{\rm sun-gr}$: solar radiance observed at the ground level

 $E_{\rm sky}$: denotes the skylight.

 μ_1 and μ_2 : cosines of the angles between the surface normal and the direction of the sun at each pixel and at the calibration panel, respectively.

Figure: Example of Atmospheric Transformation.

Spectral Augmentation

5

The Elastic Distortion consists in a displacement grid on the wavelength axis, such as

$$\widetilde{x}(\lambda) = x(\lambda + \epsilon(\lambda)) = x\left(\lambda + \sum_{i=1}^{N_G} A_i e^{-\frac{(\lambda - \lambda_i)^2}{2\sigma^2}}\right)$$
(6)

Figure: Example of Elastic Transformation.

Spectral Augmentation

- The Band Erasure (Hu et al. 2021) randomly removing certain wavelength from the spectral data.
- The Band Permutation (Hu et al. 2021) involves randomly permuting the order of the spectral bands.
- The Nearest Neighbor (Wang et al. 2023) involves creating new synthetic samples based on the average of the closest samples.

- 2 Proposed Framework
- Spectral Augmentation Techniques

4 Loss Function

6 Conclusion

Training Loss

Defining Positive Pairs:

Define for the *i*-th sample a ball \mathbf{B}^i of radius *r* where the positive pair *j* is selected as the following:

$$r \ge \left\| y^{i} - y^{j} \right\|_{2}. \tag{10}$$

Cross Entropy Based Loss:

The common contrastive loss used in most recent work is based on the cross entropy, which can be written as

$$\mathcal{L}_{Contrastive} = -\frac{1}{N} \sum_{i=1}^{2N} \sum_{j \in \mathbf{B}^{i}} \log \frac{\exp\left(\sin\left(f^{i}, f^{j}\right)/\tau\right)}{\sum_{k \notin \mathbf{B}^{i}} \exp\left(\sin\left(f^{i}, f^{k}\right)/\tau\right)}$$
(11)

 $sim(u, v) = u^T v / (||u|| ||v||)$: cosine similarity between two vectors, and τ is a temperature scalar.

Regression Loss:

For training, the contrastive loss is combined with a standard mean squared error regression loss according to the following:

$$\mathcal{L}_{\mathsf{R}} = \frac{1}{N} \sum_{i=1}^{N} \left\| y^{i} - g_{\theta} \left(f^{i} \right) \right\|^{2}$$
(12)

$$\mathcal{L}_{total} = \mathcal{L}_{\mathsf{R}} + \alpha \ \mathcal{L}_{\mathsf{Contrastive}} \tag{13}$$

12/20

- Proposed Framework
- Spectral Augmentation Techniques

4 Loss Function

Results on Synthetic Data

Synthetic Data:

- Four random spectrums from USGS digital spectral library (Swayze et al. 1993)
- Each spectrum is composed of 224 contiguous bands
- $\bullet\,$ A total of 100 $\times\,$ 100 mixed pixels were generated with abundances following a Dirichlet distribution.

Figure: USGS Spectrums.

Results on Synthetic Data

Results

Synthetic Data:

- Four random spectrums from USGS digital spectral library (Swayze et al. 1993)
- Each spectrum is composed of 224 contiguous bands
- $\bullet\,$ A total of 100 $\times\,$ 100 mixed pixels were generated with abundances following a Dirichlet distribution.

	R^2	MAE
Baseline (No Contrastive)	0.55 ± 0.004	0.073 ± 0.07
Band erasure (Hu et al. 2021)	0.62 ± 0.003	0.064 ± 0.05
Band Permutation (Hu et al. 2021)	0.63 ± 0.003	0.063 ± 0.05
Nearest Neighbor (Wang et al. 2023)	0.61 ± 0.004	0.065 ± 0.05
Scattering	0.64 ± 0.004	0.061 ± 0.06
Atmospheric	0.65 ± 0.004	0.059 ± 0.06
Flipping	0.62 ± 0.005	0.062 ± 0.07
Elastic	0.66 ± 0.003	0.058 ± 0.05
Shift	0.75 ± 0.003	0.053 ± 0.05

Table: Regression Results on Synthetic Data.

Results on Synthetic Data

Results

Synthetic Data:

- Four random spectrums from USGS digital spectral library (Swayze et al. 1993)
- Each spectrum is composed of 224 contiguous bands
- $\bullet\,$ A total of 100 $\times\,$ 100 mixed pixels were generated with abundances following a Dirichlet distribution.

Figure: Error Distribution on Synthetic Dataset.

Results on Real Data

Real Data

- Datasets provided by Tellux company, specialized in soil pollution analysis using hyperspectral imaging (Dhaini et al. 2021)
- 10000 spectra with a spectral range [1130-2450 nm] containing hydrocarbon pollution concentration ranging [0-20000 mg/kg]

Figure: Tellux Datasets.

Results on Real Data

Real Data

- Datasets provided by Tellux company, specialized in soil pollution analysis using hyperspectral imaging (Dhaini et al. 2021)
- 10000 spectra with a spectral range [1130-2450 nm] containing hydrocarbon pollution concentration ranging [0-20000 mg/kg]

	R^2	MAE
Baseline (No Contrastive)	0.45 ± 0.002	2274.04 ± 21.2
Band erasure (Hu et al. 2021)	0.54 ± 0.003	1620.22 ± 18.1
Band Permutation (Hu et al. 2021)	0.53 ± 0.003	1700.04 ± 20.5
Nearest Neighbor (Wang et al. 2023)	0.54 ± 0.003	1850.40 ± 34.5
Scattering	0.56 ± 0.003	1737.26 ± 18.2
Atmospheric	0.55 ± 0.002	1796.63 ± 16.1
Elastic	0.58 ± 0.002	1709.33 ± 18.3
Flip	0.59 ± 0.002	1708.52 ± 18.4
Shift	0.59 ± 0.002	1380.37 ± 16.5

Table: Regression Results on Real Data.

Results on Real Data

Real Data

- Datasets provided by Tellux company, specialized in soil pollution analysis using hyperspectral imaging (Dhaini et al. 2021)
- 10000 spectra with a spectral range [1130-2450 nm] containing hydrocarbon pollution concentration ranging [0-20000 mg/kg]

Figure: Error Distribution on Tellux Data.

Results

Combination Study

Methodology

- Combine several transformations to increase robustness of feature extractor
- To reduce the number of possible combinations of proposed transformations, we propose an incremental evaluation technique
- We start by taking the transformation that provided the best result (shift transformation) and then we do all the 2-element combinations.

Combination Study

	R^2	ΔR^2
Shift	0.7522	_
Shift + Atmospheric	0.7774	0.0252
Shift + Atmospheric + Scattering	0.7921	0.0147
Shift + Atmospheric + Scattering + Elastic	0.7922	0.0001

Table: Combination Study Results on Synthetic Data.

	R^2	ΔR^2
Shift	0.59000	-
Shift + Atmospheric	0.60639	0.01639
Shift + Atmospheric + Elastic	0.61791	0.01152
Shift + Atmospheric + Elastic + Scattering	0.61793	0.00002

Table: Combination Study Results on Real Data.

- Proposed Framework
- Spectral Augmentation Techniques

4 Loss Function

Conclusion

Conclusions and Future Work

- ★ We highlighted the ability of using contrastive learning for regression tasks on hyperspectral data
- ★ We proposed a set of spectral transformations adequate for hyperspectral data

Future Work

★ Combining the presented framework with domain adaptation frameworks to generalize knowledge to unseen domains.

THANK YOU FOR LISTENING !

References

- Dhaini, Mohamad et al. (2021). "Hyperspectral imaging for the evaluation of lithology and the monitoring of hydrocarbons in environmental samples". In: RemTech (International event on Remediation, Coasts, Floods, Climate, Seismic, Regeneration Industry).
- Hapke, Bruce (1981). "Bidirectional reflectance spectroscopy: 1. Theory". In: Journal of Geophysical Research: Solid Earth 86.B4, pp. 3039–3054.
- Hu, Xiang et al. (2021). "Deep spatial-spectral subspace clustering for hyperspectral images based on contrastive learning". In: *Remote Sensing* 13.21, p. 4418.
- Swayze, GA et al. (1993). "The US Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 mum". In: *Bulletin of the American astronomical society*. Vol. 25, p. 1033.
 - Uezato, Tatsumi et al. (2016). "A novel endmember bundle extraction and clustering approach for capturing spectral variability within endmember classes". In: *IEEE Transactions on Geoscience and Remote Sensing* 54.11, pp. 6712–6731.

Appendix

The Band Erasure (Hu et al. 2021) randomly removing certain wavelength from the spectral data.

$$\widetilde{x}(\lambda) = \begin{cases} 0, & \text{with probability } p \\ x(\lambda), & \text{with probability } 1 - p \end{cases}$$
(7)

where p is the probability of erasing a band.

Figure: Example of Band Erasure.

Appendix

The Band Permutation (Hu et al. 2021) involves randomly permuting the order of the spectral bands.

$$\widetilde{x}(\lambda) = x(\pi(\lambda)),$$
 (8)

where $\pi(\lambda)$ is a random permutation function.

Figure: Example of Band Permutation.

Appendix

The Nearest Neighbor (Wang et al. 2023) involves creating new synthetic samples based on the average of the closest samples.

$$\widetilde{x} = \frac{1}{k} \sum_{x^i \in \mathcal{B}(x,r)} x^i, \tag{9}$$

where $\mathcal{B}(x, r)$ is the set of k closest points to x within the radius r.

Figure: Example of Nearest Neighbor Transformation.