### ON THE CHOICE OF THE OPTIMAL TEMPORAL **SUPPORT FOR AUDIO CLASSIFICATION** WITH PRE-TRAINED EMBEDDINGS

Aurian Quelennec, Michel Olvera, Geoffroy Peeters, Slim Essid









### 2. Method a. General Overview b. Technical details

3. Experiment a. Models b. Datasets c. Parameters



4. Results



 Current state-of-the-art audic embedding models.

Pre-Training -





#### Current state-of-the-art audio analysis systems rely on pre-trained





### • When used for a downstream classification task:

**b**. Use them to train a simple linear probe





- a. Extract the pre-trained embeddings, used as features







 One aspect often overlooked in these works is the influence of the duration of audio segment considered to extract an embedding



### • Does it have an impact on the downstream tasks' scores?









#### • Does using short audio segments implies bad

### • And using long audio segments good scores?



### • Can it help in reducing inference computational cost?

#### Inference Computational Cost of Transformers





Input Lenght



embedding as Temporal Support, denoted by  $\delta_{t}$ 



 $\delta_t$ 





# We refer to the duration of audio input considered to extract an



#### • We use it with a frozen pre-trained model f(.)









#### • We obtain an embedding e







#### • The embedding e is projected with a linear probe g(.)









• We thus obtain a local prediction  $\hat{\mathbf{y}}$ 

f(.)Audio Embedding Model Audio Input of length  $\delta_t$ 







# 2-b) Technical details

• However in most downstream tasks, for a given audio example  $\mathbf{X}$ , we have  $\delta_r$  shorter than the whole audio.









# 2-b) Detailed principles





#### • So we denote by **E** the embedding sequence extracted over **X** with f(.).



# 2-b) Detailed principles

#### • And we denote by $\hat{\mathbf{Y}}$ the prediction sequence derived from $\mathbf{E}$ with g(.).







# 2-b) Detailed principles

Finally, to obtain a clip-level μ(.)





#### • Finally, to obtain a clip-level prediction $\hat{\mathbf{y}}$ we use an aggregation function



## 3-a) Models

### • PaSST [1] :

- Audio Spectrogram
   Transformer based on ViT
- Supervised training
- Trained with  $\delta_t$  of 10s



17

[1] Efficient Training of Audio Transformers with Patchout, Koutini et al. Interspeech 2022





# 3-a) Models

### • BEATs [2]:

- Audio Spectrogram
   Transformer based
- Self Supervised Learning iterative training procedure
- Trained with  $\delta_t$  of 10s



18

[2] BEATs: Audio Pre-Training with Acoustic Tokenizers, Chen et al. ICML 2023





# 3-a) Models

- **BYOL-A** [3]:
  - CNN based

 SSL iterative training procedure

• Trained with  $\delta_t$  of 1s







19

[3] BYOL for Audio: Exploring Pre-Trained General-Purpose Audio Representations, *Niizumi et al.* IEEE/ACM Transactions on Audio, Speech and Language Processing 2023







## 3-b) Datasets

- OpenMIC [4]:
  - Instrument Classification
  - 20 classes, multi-label
  - 20,000 excerpt of 10s



20

[4] Openmic-2018: An open data-set for multiple instrument recognition, *Humphrey et al.* ISMIR 2018







### 3-b) Datasets

- TAU Urban Acoustic Scenes [5] :
  - Scene classification
  - 10 classes, multi-class
  - 23,040 excerpt of 10s



21

[5] A multi-device dataset for urban acoustic scene classification, Mesaros et al. DCASE 2018







### 3-b) Datasets

- ESC-50 [6] :
  - Event classification
  - 50 classes, multi-class
  - 2,000 excerpt of 5s



22

[6] ESC: dataset for environmental sound classification, Piczak et al. ACM 2018





### 3-c) Parameters







### 3-c) Parameters







### 3-c) Parameters



 $\delta_t = 5s$ 





### 3-c) Parameters



 $\delta_t = 10s$ 





### 3-c) Parameters











### 3-c) Parameters







### 4- Results



- A longer  $\delta_{t}$  does does not always result in a better score
- Best performances are not necessarily achieved for the  $\delta_{t}$  used to train the Ο model. 29



### 4- Results



• For Instrument Classification task we reach the SOTA for  $\delta_{r}$  of 3s and 5s without fine-tuning



### 5. Conclusion







### 5- Conclusion

models were trained with longer audio

the dataset

• A smaller  $\delta_t$  reduces the memory and computational cost of the Transformer models at inference time.



• Using the longest  $\delta_t$  does not always imply better performances, even if the

 $\circ$  The choice of the optimal  $\delta_{r}$  for the best score depends on the model and





| Model                                          | $\delta_t$      | OpenMIC                                                                                                |                                                                                                        | TAU Urban                                          |                                                                             | ESC-50                                             |                                                                             | Emb. Size                      | #Param.            |
|------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------|--------------------|
|                                                |                 | $\mu_{ m m}(\cdot)$                                                                                    | $\mu_{\mathrm{a}}(\cdot)$                                                                              | $\mu_{ m m}(\cdot)$                                | $\mu_{\mathrm{a}}(\cdot)$                                                   | $\mu_{ m m}(\cdot)$                                | $\mu_{\mathrm{a}}(\cdot)$                                                   | ಚಾರಾಜ ಮಾಡುವರೆ - ನಡೆಸಿದರೆಂದು    |                    |
| BYOL-A v2<br>PaSST<br>BEATs                    | 1               | $\begin{array}{c} 0.792 \pm 0.001 \\ 0.851 \pm 0.001 \\ 0.852 \pm 0.001 \end{array}$                   | $\begin{array}{c} 0.797 \pm 0.003 \\ 0.860 \pm 0.002 \\ 0.865 \pm 0.001 \end{array}$                   | $52.5 \pm 1.4$<br>$63.3 \pm 0.4$<br>$67.5 \pm 0.2$ | $50.6 \pm 1.7$<br>$62.0 \pm 0.5$<br>$61.0 \pm 4.3$                          | $69.1 \pm 1.4$<br>$93.1 \pm 0.2$<br>$93.2 \pm 0.1$ | $68.7 \pm 1.1$<br>$93.0 \pm 0.4$<br>$93.4 \pm 0.4$                          | $3072 \\ 768 \\ 48 \cdot 768$  | 6.3N<br>87N<br>90N |
| BYOL-A v2<br>PaSST<br>BEATs                    | 3               | $\begin{array}{c} 0.805 \pm 0.001 \\ 0.866 \pm 0.001 \\ 0.862 \pm 0.000 \end{array}$                   | $\begin{array}{c} 0.804 \pm 0.005 \\ 0.865 \pm 0.000 \\ 0.866 \pm 0.002 \end{array}$                   | $53.9 \pm 0.9 \\ 65.0 \pm 0.4 \\ 66.8 \pm 0.2$     | $\begin{array}{c} 52.3 \pm 0.9 \\ 64.5 \pm 0.5 \\ 64.9 \pm 1.4 \end{array}$ | $71.2 \pm 1.1$<br>$95.7 \pm 0.1$<br>$95.4 \pm 0.1$ | $\begin{array}{c} 72.6 \pm 1.0 \\ 95.0 \pm 0.1 \\ 93.4 \pm 0.3 \end{array}$ | $3072 \\ 768 \\ 144 \cdot 768$ | 6.3N<br>87N<br>90N |
| BYOL-A v2<br>PaSST<br>BEATs                    | 5               | $\begin{array}{c} 0.806 \pm 0.002 \\ 0.866 \pm 0.001 \\ \textbf{0.869} \pm \textbf{0.002} \end{array}$ | $\begin{array}{c} 0.808 \pm 0.003 \\ 0.868 \pm 0.001 \\ \textbf{0.869} \pm \textbf{0.001} \end{array}$ | $53.8 \pm 1.1$<br>$66.5 \pm 0.5$<br>$67.5 \pm 0.2$ | $53.6 \pm 0.9 \\ 65.9 \pm 1.0 \\ 65.4 \pm 2.6$                              | $72.8 \pm 1.8$<br>$96.8 \pm 0.2$<br>$96.1 \pm 0.0$ | $74.0 \pm 1.1$<br>$96.6 \pm 0.2$<br>$95.7 \pm 0.3$                          | $3072 \\ 768 \\ 248 \cdot 768$ | 6.3N<br>87N<br>90N |
| BYOL-A v2<br>PaSST<br>BEATs                    | 10              | $\begin{array}{c} 0.803 \pm 0.001 \\ 0.861 \pm 0.001 \\ 0.866 \pm 0.000 \end{array}$                   | $\begin{array}{c} 0.805 \pm 0.002 \\ 0.857 \pm 0.001 \\ 0.867 \pm 0.000 \end{array}$                   | $52.4 \pm 1.5$<br>$66.7 \pm 0.5$<br>$67.5 \pm 0.3$ | $54.7 \pm 0.8$<br>$66.9 \pm 0.4$<br>$67.2 \pm 1.1$                          |                                                    | -                                                                           | $3072 \\ 768 \\ 496 \cdot 768$ | 6.3N<br>87N<br>90N |
|                                                |                 |                                                                                                        |                                                                                                        | Results from                                       | papers                                                                      |                                                    |                                                                             |                                |                    |
| ResAtt [23]<br>PaSST-S [8]<br>BEATs iter3+[10] | 10<br>10/5<br>5 | 0.860<br>0.843<br>-                                                                                    |                                                                                                        | -<br>75.6<br>-                                     |                                                                             | -<br>96.8<br>98.1                                  |                                                                             | 2048<br>768<br>248 · 768       | -<br>87N<br>90N    |

| $f(\cdot)$  |
|-------------|
| 1<br>[<br>[ |
| 1<br>[<br>[ |
| 1<br>[<br>[ |
| 1<br>[<br>[ |
|             |
| [           |