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1- Motivation

● Current state-of-the-art audio analysis systems rely on pre-trained 
embedding models.



1- Motivation
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● When used for a downstream classification task:

a. Extract the pre-trained embeddings, used as features

b. Use them to train a simple linear probe
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● One aspect often overlooked in these works is the influence of the 
duration of audio segment considered to extract an embedding
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1- Motivation
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● Does it have an impact on the downstream tasks’ scores?
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● Does using short audio segments implies bad 
scores?

● And using long audio segments good scores?
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● Can it help in reducing inference computational cost?
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● We refer to the duration of audio input considered to extract an 
embedding as Temporal Support, denoted by δt 
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2- a) General Overview
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● We use it with a frozen pre-trained model f(.) 
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2- a) General Overview
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● We obtain an embedding e
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2- a) General Overview
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● The embedding e is projected with a linear probe g(.)

11

2- a) General Overview
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● We thus obtain a local prediction ŷ
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2- a) General Overview

12



● However in most downstream tasks, for a given audio example    , we 
have δt shorter than the whole audio.
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2- b) Technical details
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● So we denote by     the embedding sequence extracted over     with         .
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2- b) Detailed principles
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● And we denote by     the prediction sequence derived from     with        .
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2- b) Detailed principles
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● Finally, to obtain a clip-level prediction ŷ we use an aggregation function 
µ(.)
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2- b) Detailed principles
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● PaSST [1] : 

○ Audio Spectrogram 
Transformer based on ViT

○ Supervised training

○ Trained with δt of 10s
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3- a) Models

[1] Efficient Training of Audio Transformers with Patchout, Koutini et al. Interspeech 202217
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3- a) Models
● BEATs [2]: 

○ Audio Spectrogram 
Transformer based

○ Self Supervised Learning 
iterative training procedure

○ Trained with δt of 10s

[2] BEATs: Audio Pre-Training with Acoustic Tokenizers, Chen et al. ICML 202318
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3- a) Models
● BYOL-A [3]: 

○ CNN based

○ SSL iterative training 
procedure

○ Trained with δt of 1s

[3] BYOL for Audio: Exploring Pre-Trained General-Purpose Audio Representations, 
Niizumi et al. IEEE/ACM Transactions on Audio, Speech and Language Processing 
202319



● OpenMIC [4] : 

○ Instrument Classification

○ 20 classes, multi-label

○ 20,000 excerpt of 10s
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3- b) Datasets

[4] Openmic-2018: An open data-set for multiple instrument recognition, Humphrey et al. 
ISMIR 201820



● TAU Urban Acoustic Scenes [5] : 

○ Scene classification

○ 10 classes, multi-class

○ 23,040 excerpt of 10s

21

3- b) Datasets

[5] A multi-device dataset for urban acoustic scene classification, Mesaros et al. DCASE 2018
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● ESC-50 [6] : 

○ Event classification

○ 50 classes, multi-class

○ 2,000 excerpt of 5s
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3- b) Datasets

[6] ESC: dataset for environmental sound classification, Piczak et al. ACM 2018
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● δt : 
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3- c) Parameters

23



● δt : 
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3- c) Parameters
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● δt : 
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3- c) Parameters
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● δt : 
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3- c) Parameters
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● µm(.) mean pooling: 
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3- c) Parameters
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● µa(.)  attention pooling: 
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3- c) Parameters
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4- Results

○ A longer δt does does not always result in a better score

○ Best performances are not necessarily achieved for the δt  used to train the 
model.
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4- Results

30

○ For Instrument Classification task we reach the SOTA for δt of 3s and 5s without 
fine-tuning

Event Classification Scene Classification Instrument Classification



5. Conclusion

3131



32

5- Conclusion

○ Using the longest δt does not always imply better performances, even if the 
models were trained with longer audio

○ The choice of the optimal δt for the best score depends on the model and 
the dataset

○ A smaller δt reduces the memory and computational cost of the Transformer 
models at inference time.
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