Part Representation Learning with Teacher-Student Decoder for Occluded Person Re-Identification

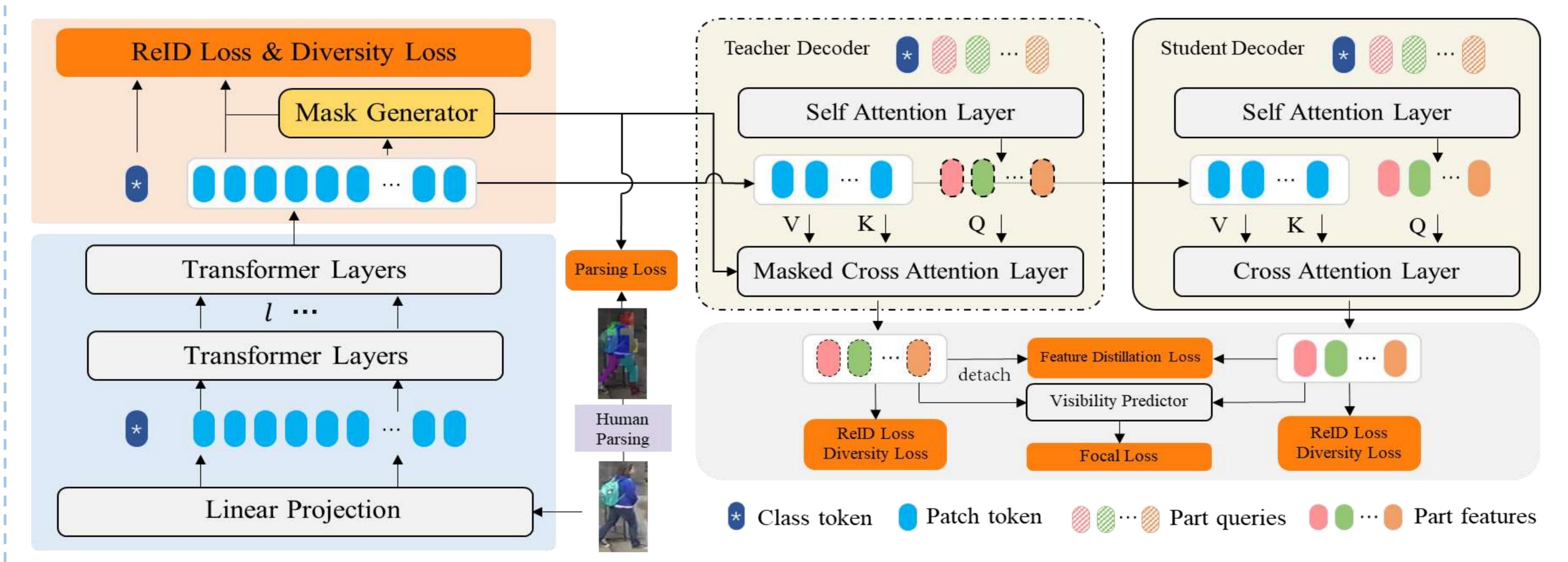
Shang Gao^{1,2}, Chenyang Yu¹, Pingping Zhang^{1*}, and Huchuan Lu^{1,2}
1 Dalian University of Technology, Dalian, China
2 NingBo Institute of Dalian University of Technology, Ningbo, China

gs940601k@gmail.com, zhpp@dlut.edu.cn, lhchuan@dlut.edu.cn

Motivation and Contribution

- Disentangling body part features and conducting part-to-part comparison on the visible body parts is a mainstream solution for occluded person ReID.
- Transformer encoder-decoder model has shown powerful capabilities in many vision tasks. However, it fails in adequately disentangling body part features with merely global supervision for person ReID

Re-Occluded-Duke Benchmark


- Existing occluded person ReID benchmarks utilize occluded samples as queries, which will amplify the role of alleviating occlusion interference and underestimate the impact of the feature absence issue.
- We propose a new benchmark with non-occluded queries, wherein positive holistic samples are ignored in the ranking list.

- Leveraging external cues such as human pose or parsing to locate and align part features has been proven to be very effective in occluded person ReID.
- We propose a Teacher-Student Decoder (TSD) framework to incorporate the human parsing information into the Transformer for occluded person ReID.

Part Representation Learning with Teacher-Student Decoder

- Cross-attention machine in Standard Student Decoder (SSD) $X^{s} = \text{Softmax}(QK/\sqrt{D})V$
- Cross-attention machine in Parsing-aware Teacher Decoder (PTD) $X_p^t = \text{Softmax}(H_p + Q_p K)V$
- Feature distillation loss to transfer knowledge from PTD to SSD: $L_{fd} = \frac{1}{P} \sum_{i} (1 - Sim(F_i^{sd}, F_i^{td}))$

Experiment and Visualization

- Mask Generation to preserve model from noisy parsing results $M = Softmax(F^{pt}G^T)$
 - $L_m = L_{ce}(F_c^{part}) + L_{tri}^p(F^{part}) + L_{pa}(M)$
- **Diversity loss** to preserve model from extracting identical features

$$L_{div} = \frac{1}{P(P-1)} \sum_{i=1, i \neq j}^{P} \sum_{j=1}^{P} Sim(F_i^{td}, F_j^{td})$$

Table 1. Comparison with other state-of-the-art methods on Occluded-Duke and DukeMTMC-reID. * indicates the backbone is with an overlapping stride setting. † indicates it is reproduced by replacing the original backbone with ViT.
 Table 3. Ablation study for the main components on

 Occluded-Duke and our benchmark.

Table 2 . Comparison with other methods of	on our benchmark.
---	-------------------

Method	OCC		NPO		NTP	
	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP
VIT-B [1]	67.1	52.5	60.8	51.1	60.1	51.4
FED [23]	63.9	47.4	57.6	46.0	56.7	46.6
BPBreID* [6]	67.8	54.1	61.5	53.4	59.0	50.4
DPM [24]	69.2	53.5	62.0	50.8	63.6	53.9
PFD [9]	70.9	55.7	64.8	54.3	64.6	55.2
Ours	71.4	58.7	68.0	61.5	61.9	52.5
SAP* [14]	71.4	57.1	65.8	55.4	65.4	56.6
Ours *	73.2	61.7	68.8	62.7	64.9	57.5

Method	Occlude	d-Duke	DukeMTMC-rell		
Wichiou	Rank-1	mAP	Rank-1	mAP	
ViT-B [1]	61.5	53.5	88.8	79.3	
TransReID [22]	64.2	55.7	89.6	80.6	
BPBreID [†] [6]	66.0	56.7	90.2	80.8	
PFD [9]	67.7	60.1	90.6	82.2	
FED [23]	68.1	56.4	89.4	78.0	
Ours	70.6	57.3	90.2	81.7	
DPM* [24]	71.4	61.8	91.0	82.6	
SAP* [14]	70.0	62.2		-	
PFD* [9]	69.5	61.8	91.2	83.2	
Ours *	74.5	62.8	90.8	82.8	

Method	Occludee	d-Duke	OCC	NPO	NTP
	Rank-1	mAP	mAP	mAP	mAP
Baseline	61.5	53.5	52.3	50.2	50.8
M1	59.9	51.5	49.0	47.4	48.4
M2	65.1	54.3	54.6	57.8	48.6
M3	68.3	54.9	54.5	56.8	48.2
M4	70.6	57.3	58.7	61.5	52.5

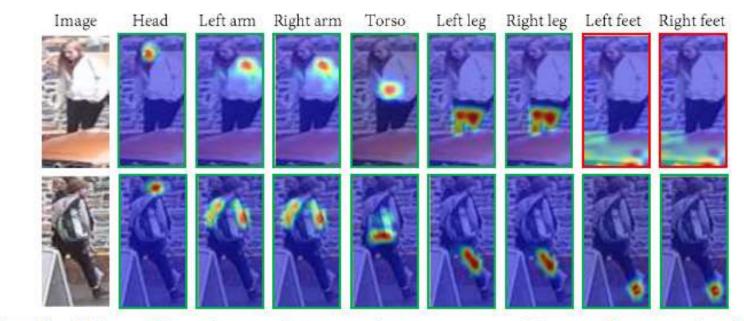


Fig. 3. Visualization of attention maps. Green boxes indicate visible predictions, while red boxes for invisible ones.

ICASSP2024 Paper ID: 1407