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ABSTRACT

Occluded person re-identification (ReID) is a very challeng-
ing task due to the occlusion disturbance and incomplete
target information. Leveraging external cues such as human
pose or parsing to locate and align part features has been
proven to be very effective in occluded person ReID. Mean-
while, recent Transformer structures have a strong ability
of long-range modeling. Considering the above facts, we
propose a Teacher-Student Decoder (TSD) framework for
occluded person ReID, which utilizes the Transformer de-
coder with the help of human parsing. More specifically, our
proposed TSD consists of a Parsing-aware Teacher Decoder
(PTD) and a Standard Student Decoder (SSD). PTD employs
human parsing cues to restrict Transformer’s attention and
imparts this information to SSD through feature distillation.
Thereby, SSD can learn from PTD to aggregate information
of body parts automatically. Moreover, a mask generator is
designed to provide discriminative regions for better ReID. In
addition, existing occluded person ReID benchmarks utilize
occluded samples as queries, which will amplify the role of
alleviating occlusion interference and underestimate the im-
pact of the feature absence issue. Contrastively, we propose a
new benchmark with non-occluded queries, serving as a com-
plement to the existing benchmark. Extensive experiments
demonstrate that our proposed method is superior and the
new benchmark is essential. The source codes are available
at https://github.com/hh23333/TSD.

Index Terms— Occluded Person Re-identification, Vi-
sion Transformer, Part Representation, Feature Distillation.

1. INTRODUCTION

Person re-identification (ReID) is the task of retrieving the
query pedestrian across multiple non-overlapping cameras.
In recent years, significant improvements have been achieved
with the advancement of deep learning [2, 3, 4]. However,
the accuracy of person ReID under occlusion is still unsatis-
factory, which is a common situation in practical scenarios.

*Corresponding author (zhpp@dlut.edu.cn).
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Fig. 1. (a) An example with the interference of similar oc-
clusions (from the Occluded-Duke benchmark [1]). (b) An
example with similar hard negative samples and the missing
part in the positive sample (from our proposed benchmark).
(c) The ranking setting in our benchmark, where holistic pos-
itive samples are ignored when calculating evaluation metrics.

The difficulty of occluded person ReID is primarily due to
the occlusion disturbance and misalignment caused by incom-
plete target information. To address these issues, many previ-
ous methods [5, 6, 7, 8, 9] leverage external cues such as hu-
man pose or parsing to locate the human body parts and align
the visible ones. Recently, inspired by the strong generality
in various vision tasks [10, 11, 12], some methods [13, 8, 9]
propose to adopt Transformer structures to extract and dis-
entangle deep features for occluded person ReID. For exam-
ple, Wang et al. [9] integrate patch features and key-point
information with the Transformer decoder to enhance local
patch features. Jia et al. [14] propose a semi-attention parti-
tion method, aiming to comply consistency with human pars-
ing while keeping resistance against noisy supervision. How-
ever, they may suffer from the part misalignment problem.
In this paper, a Teacher-Student Decoder (TSD) framework
is proposed to utilize the Transformer decoder and focus on
the corresponding body parts with the help of human parsing.
Specifically, our TSD consists of a Parsing-aware Teacher De-
coder (PTD) and a Standard Student Decoder (SSD). PTD re-
stricts the attentions to specific body parts by human parsing
cues. Then, a feature distillation is employed on the outputs
of PTD and SSD to ensure them closer to each other. Thereby,
SSD can learn from PTD to aggregate information from cor-
responding body parts automatically.

Meanwhile, existing occluded person ReID datasets only
use occluded samples as queries. As shown in Figure 1(a),
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Fig. 2. Overview of our proposed approach.

the main concern is to eliminate the interference of similar
occlusions. Therefore, it may underestimate the impact of
the feature absence problem on evaluation metric. To solve
these problems, we propose a new benchmark for occluded
person ReID. As depicted in Figure 1(c), the query is a holis-
tic sample and the positive holistic samples are ignored in the
ranking list. As shown in Figure 1(b), the query and the hard
negative samples have similar lower bodies, while the lower
body of the positive sample is occluded. In this case, merely
alleviating the noise caused by occlusion is insufficient. The
misalignment problem caused by the missing local informa-
tion also needs to be addressed, thereby it can be reflected
in evaluation metric. Therefore, our benchmark can serve as
a supplement to existing evaluation settings, and reflect the
ReID performance under occlusion more comprehensively.

In summary, the main contributions of this work are
three-fold: (1) A Teacher-Student Decoder (TSD) framework
is proposed to incorporate the human parsing information
into the Transformer for occluded person ReID. (2) A new
benchmark is introduced to better evaluate the performance
of occluded person ReID methods. (3) Extensive experi-
ments on existing benchmarks and the proposed benchmark
demonstrate the superiority of our method.

2. METHODOLOGY

Our proposed framework is illustrated in Figure 2. Our
method adopts a pre-trained ViT [2] as the encoder to extract
feature representations from the input image X . The global
feature F g ∈ RD is the final output of the class token and
F pt ∈ RN×D is the final patch embedding. Here, N is
the number of patches and D is the feature dimension. We
elaborate on key components in the following sections.

2.1. Teacher-Student Decoder

Our proposed TSD consists of two key components, i.e., a
Parsing-aware Teacher Decoder (PTD) and a Standard Stu-
dent Decoder (SSD). They have the same structure and share

parameters. The only difference is that the teacher decoder
takes external binary masks M ∈ RP×N as inputs and re-
stricts the discriminative regions for cross-attention. P is the
number of parts. M(p, i) = 1 if the i-th location belongs to
the p-th part and M(p, i) = 0 vice versa.

We define P semantic queries Qem = [q1, q2, ..., qP ] by
a set of learnable embedding, each of which corresponds to a
body part. Then they are concatenated with the class embed-
ding and fed into the standard self-attention layer as:

[qg, Qem] = MHSA([F g, Qem]). (1)

The MHSA is the Multi-Head Self-Attention. The reason for
incorporating the class token is that it helps the part queries
better aggregate the features of the target pedestrian by the
following cross attention layer. In addition, the SSD directly
employs the standard cross-attention as:

Xs = Softmax(QKT /
√
D)V, (2)

where Q = φ(Qem) ∈ RP×D is the query embedding un-
der linear projection φ. K = ϕ(F pt) ∈ RN×D and V =
ψ(F pt) ∈ RN×D are the image features under the transfor-
mations ϕ and ψ, respectively. Finally, the output of the stu-
dent decoder can be obtained by:

F sd = FFN(LN(Xs)), (3)

where FFN and LN denote the feed-forward network and
layer normalization [15], respectively. The PTD employs
masked attentions via:

Xt
p = Softmax(Hp +QpK

T )V, (4)

whereXt
p is the p-th part feature,Qp is the p-th query embed-

ding and Hp ∈ RN is defined by:

Hp(i) =

{
0, if M(p, i) = 1,

−∞, otherwise.
(5)

2661

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 14,2024 at 04:54:45 UTC from IEEE Xplore.  Restrictions apply. 



The output of the teacher decoder can be obtained by:

F td = FFN(LN(Xt)), (6)

then the feature distillation loss is employed to ensure each
student query focus on a specific body part:

Lfd =
1

P

∑
i

(1− Sim(F sd
i , F td

i )), (7)

where Sim(·) denotes the cosine similarity. In addition, Lfd

may lead the decoder to extract identical features. Thus, a
diversity loss is employed on the part features:

Ldiv =
1

P (P − 1)

P∑
i=1,i̸=j

P∑
j=1

Sim(F td
i , F td

j ). (8)

2.2. Mask Generation
The mask can be obtained by directly employing human pars-
ing methods [16]. However, it suffers from domain gaps and
the lack of end-to-end training leads to generic masks not suit-
able for ReID. Therefore, we propose a mask generator with
both a body part prediction objective and a ReID objective as
in [6]. The mask generator consists of a fully-connected layer
with parametersG ∈ R(P+1)×D followed by a softmax layer.
Thus, the part heatmaps M can be obtained by:

M = Softmax(F ptGT ). (9)

To generate the semantic mask as the input of PTD, we per-
form the argmax operation on M .

2.3. Overall Training and Inference Procedure

Training Procedure: To optimize the proposed framework,
the overall loss is formulated as:

L = Lce(F
g)+Ltri(F

g)+Lce(F
sd
c )+Lp

tri(F
sd)+Lce(F

td
c )

+ Lp
tri(F

td) + Lm + Lfd + Ldiv + Lv, (10)

whereLce is the cross-entropy loss with the BNNeck trick [17].
Ltri is the triplet loss [18]. F sd

c and F td
c are produced by con-

catenating the P part features along the channel dimension.
Lp
tri is the part average triplet loss [6]. Lm is used to train the

mask generation as in [6]:

Lm = Lce(F
part
c ) + Lp

tri(F
part) + Lpa(M) (11)

F part
i =

∑N
l=0M(l)F pt(l)∑N

l=0M(l)
(12)

F part
c = Concat(F part

1 , F part
2 , ..., F part

P ). (13)

Here, Lpa is a cross-entropy loss with label smoothing. Lv

is the focal loss [19] to supervise the visibility vp by a binary
classifier upon F sd:

Lv =

{
−α(1− vp)

γ log(vp), if v̂p = 1,

−(1− α)vp
γ log(1− vp), otherwise,

(14)

where v̂p is the label of the p-th part visibility defined by the
human parsing as in [6], α and γ are parameters to balance
positive vs. negative and hard vs. easy samples, respectively.
Inference Procedure: The mask generator and teacher
decoder are not needed in the inference procedure. The
visibility-based part-to-part matching strategy [6, 5] is adopted
to calculate the distance of the query q and gallery sample g:

d =

∑
i∈{g,1,...,P}(v

q
i · v

g
i · dist(F q

i , F
g
i ))∑

i∈{g,1,...,P}(v
q
i · v

g
i )

. (15)

Here, {Fi|i ∈ 1, ..., P} is the part feature from the student de-
coder and dist is the Euclidean distance. Finally, the ranking
list is achieved by sorting the distance.

3. NEW BENCHMARK

To thoroughly measure the ReID performance under occlu-
sion, we introduce the Re-Occluded-Duke dataset, which is a
reorganized version of the Occluded-Duke dataset [1].

3.1. Properties of Re-Occluded-Duke

We maintain the same training set as the Occluded-Duke
dataset [1], which consists of 15,618 images from 702 iden-
tities. Then, we merge the original query and gallery sets
into a new gallery set, which contains 18,001 images from
1,110 identities. For images from the identities that appear
in the original query set, we manually annotate their occlu-
sion status into non-pedestrian occlusion (NPO), non-target
pedestrian occlusion (NTP) and holistic images. From these
annotated images, we select all holistic images as the candi-
date set and randomly sample up to 5 images per identity to
the query set. Finally, the query set contains 2538 holistic
images from 517 identities.

3.2. New Evaluation Metrics

The Cumulative Matching Characteristic (CMC) curves and
mean Average Precision (mAP) are common metrics for eval-
uating the performance of different person ReID methods. In
order to better evaluate occluded samples, we propose sev-
eral new evaluation metrics. Occ-CMC and Occ-mAP focus
on the retrieval of occluded samples. They ignore the correct
matches of holistic samples in the rank list. Similarly, NPO-
CMC and NPO-mAP are metrics that consider non-pedestrian
occlusion, while NTP-CMC and NPO-mAP are metrics that
account for non-target pedestrian occlusion.

4. EXPERIMENTS

4.1. Datasets and Evaluation Metrics

We evaluate our model on the holistic DukeMTMC-reID
dataset [20] and the occluded Occluded-Duke dataset [1] as
well as our benchmark. We report the Rank-1 and mAP for
the former two datasets and report the metrics as described in
Sec. 3.2 for our benchmark.
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Table 1. Comparison with other state-of-the-art methods on
Occluded-Duke and DukeMTMC-reID. ∗ indicates the back-
bone is with an overlapping stride setting. † indicates it is
reproduced by replacing the original backbone with ViT.

Method Occluded-Duke DukeMTMC-reID
Rank-1 mAP Rank-1 mAP

ViT-B [2] 61.5 53.5 88.8 79.3
TransReID [22] 64.2 55.7 89.6 80.6

BPBreID† [6] 66.0 56.7 90.2 80.8
PFD [9] 67.7 60.1 90.6 82.2

FED [23] 68.1 56.4 89.4 78.0
Ours 70.6 57.3 90.2 81.7

DPM* [24] 71.4 61.8 91.0 82.6
SAP* [14] 70.0 62.2 - -
PFD* [9] 69.5 61.8 91.2 83.2

Ours * 74.5 62.8 90.8 82.8

Table 2. Comparison with other methods on our benchmark.
Method OCC NPO NTP

Rank-1 mAP Rank-1 mAP Rank-1 mAP
VIT-B [2] 67.1 52.5 60.8 51.1 60.1 51.4
FED [23] 63.9 47.4 57.6 46.0 56.7 46.6

BPBreID∗ [6] 67.8 54.1 61.5 53.4 59.0 50.4
DPM [24] 69.2 53.5 62.0 50.8 63.6 53.9

PFD [9] 70.9 55.7 64.8 54.3 64.6 55.2
Ours 71.4 58.7 68.0 61.5 61.9 52.5

SAP* [14] 71.4 57.1 65.8 55.4 65.4 56.6
Ours * 73.2 61.7 68.8 62.7 64.9 57.5

4.2. Implementation Details

We adopt the ViT-B [2] as our backbone. All images are re-
sized to 256 × 128. The training images are augmented with
random erasing [21], padding, and random cropping for all
experiments. The batch size is set to 64 with 4 images per ID.
The SGD optimizer is employed with a momentum of 0.9 and
the weight decay of 1e−4. The learning rate is initialized as
0.004 with a cosine learning rate decay. We train the model
for 120 epochs. The number of parts P is set to 8. We adopt
the same human parsing model as in [6].

4.3. Comparison with State-of-the-art Methods

We compare our model with other state-of-the-art methods
on Occluded-Duke and DukeMTMC-reID in Table 1. All of
them adopt Transformers as the backbone. Our method out-
performs all the competitors on Occluded-Duke dataset. The
main reason is that our TSD guides each query adaptively fo-
cus on a corresponding body part, thereby better disentan-
gling pedestrian features. Furthermore, our method achieves
competitive results on the holistic dataset DukeMTMC-reID.

Table 2 shows the result of our method and other methods
on our new benchmark. It can be observed that our method
can achieves superior performance, especially on the NPO
samples. It is noteworthy that FED [23] performs well on
the Occluded-Duke dataset. However, it is inferior on our
new benchmark, even worse than the baseline method. The
main reason is that it only considers the noise introduced by
occlusion, but ignores the misalignment issue.

Table 3. Ablation study for the main components on
Occluded-Duke and our benchmark.

Method Occluded-Duke OCC NPO NTP
Rank-1 mAP mAP mAP mAP

Baseline 61.5 53.5 52.3 50.2 50.8
M1 59.9 51.5 49.0 47.4 48.4
M2 65.1 54.3 54.6 57.8 48.6
M3 68.3 54.9 54.5 56.8 48.2
M4 70.6 57.3 58.7 61.5 52.5

Fig. 3. Visualization of attention maps. Green boxes indicate
visible predictions, while red boxes for invisible ones.

4.4. Ablation Study

In this section, we conduct ablation studies on the Occluded-
Duke and our benchmark to analyze the effectiveness of each
component. The results are shown in Table 3. The baseline is
with the standard vision Transformer [22]. M1 denotes the
pure Transformer encoder-decoder architecture. Its results
are inferior to the baseline. The possible reason is that the
model can not adaptively decouple features in the absence of
auxiliary supervision, and the newly initialized decoder may
even bring a negative effect. From M2, when the masked
teacher is added, the performance is greatly improved. This
indicates that the masked teacher can effectively aggregate lo-
cal features and transfer the information to guide the student
decoder. M3 denotes the diversity loss is further added to
M2. It can be observed that the diversity loss also brings per-
formance improvement. By replacing the fixed mask with a
learnable one, M4 surpasses M3. It shows our mask genera-
tor can effectively identify distinctive regions. Furthermore,
Figure 3 shows the attention maps towards each query of the
decoder. Our method can successfully focus on different body
parts and precisely predict the visibility. It clearly shows the
effectiveness of extracting discriminative regions.

5. CONCLUSION

In this paper, a Teacher-Student Decoder (TSD) framework is
proposed to incorporate the human parsing information into
the Transformer structure for occluded person ReID. In ad-
dition, a new benchmark is introduced to better evaluate the
ReID performance under occlusion. Extensive experiments
demonstrate the superiority of our method.
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