Permutation-alighment method using manifold optimization
for frequency-domain blind source separation

SUMMARY

e Use stricter objective function

e Apply manifold optimization

e Convert combinatorial to gradient-based optimization
e relaxing constraint of permutation matrix to that of doubly stochastic matrix

o Significantly larger SDR improvement compared with AuxIVA and ILRMA
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1. Frequency-domain BSS
2-step approach (2000s)

e Independent component analysis (ICA) in each
frequency bin
® Resolve amplitude and permutation ambiguities

1-step approach (2006-)
e Independent vector analysis (IVA), Independent
low-rank matrix analysis (ILRMA)
® No need to align permutation

e speech in time-frequency domain is modelled by
multivariate probability function

Sparse Unitary-constrained FD-ICA (2020, [1])

e Use Riemannian optimization

e 2-step apporach is still competitive with 1-step
approach.

Question

e Can we further improve the state-of-the-art
permutation alignment method?

Idea for solution
e Stricter objective function
® From combinatorial optimization of permutation
To gradient optimization of doubly-stochastic matrix

2. Conventional 2-step approach
2.1. Frequency-domain (FD) ICA

e N sound sources and /N microphones in ordinary room
e Transform to FD by frame-wise STFT

X(I, f) =H(f)S( f) (1)
[ frame’s indices
f: frequency indices

X (I, f): microphone signals (N x 1)
H(f): acoustic paths (N x N)

e Complex-valued instantaneous BSS algorithm separate
each source element Y (I, f)

Y, f) =W)X f) (2)
W (f): unmixing filters (N x N)

Sources mic ICA
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2.2. Remaining Ambiguities
Ambiguities of scaling and permutation in each f

S(l, f) = D(f)A(f)Y (L f), (3)

A(f): scaling matrix
D(f): permutation matrix
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2.3. Inter-frequency similarity measure
Consider estimates after projection back

Y, f)=ANYA f) =AW HXA f). (4)
» Murata et al. (2001) proposed correlation coefficients

between the envelopes |Y;(:, f)]
e Sawada et al. (2007) proposed power ratio sequence

(PRS) converted from |Y;(:, f)]| as

N 2
VIO = 1% DF/ X |0, ) (5)
iz
Objective function (Sawada et al. 2007)
F N
J3<H17 N aHF) — ij Sjl P (Tn(l)7 V;,fa)) i:ﬁf(n) (6)
| n=

fiy) T.() V()
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T.(l): average PRS over frequency of nth source
[1: estimated permutation at f
cov(e): covariance

o(e): standard deviation

3. Permutation alignment using gradient

3.1. Stricter objective function
Objective function incorporating all pairs of frequency bins
(f, g) without averaging

Jo(ﬁla S 7ﬁF) — Z y: S: % (Vﬁff<n>(l)7 Vfi(n)U)) . (8)

n=1 f=1g=1.9#f
F F 1 N
J(D(1),-- D(F) =Y. ¥ +Tr(D(H)V,V;D(g)") (9)
f=1g=Lg9#f
where

® permutation is expressed by
Py ={D e {0,1}"*": D1y =1y, D"1y =1y}, (10)

D: sparse, square binary matrix in which each column
and each row contains only a single 1.

Vi N x L matrix. lts i-th row vector is
VI, Vi e (V).

Combinatorial optimization is required to obtain D(f).

3.2. Relaxation to DPy [2]

Relax permutation matrices with doubly-stochastic (DS)
matrices defined as

DPy ={DeRY:D;>0,Dly=1y,D"1y =1y}. (12)

Combinatorial optimization problem
— a gradient-based one on DPy embedded in RY*.

3.3. Manifold optimization [2]
Euclidean gradient of J(e) in RY*Y

0J 1 L -
== D(g)V,V}
oD(f) L, 2, DOVVs

is projected on the tangent space TyDPy at X = D(f)
using projection operator

(13)

Ne(P) =Y — (a1’ +18NH 0 X, (14)
a=1-xX071Y—-xYNI,
5 — yT]- o XT&)
with step-size 1 as
0.J
() = e (5507 (15)

where ®: element-wise product, ZT: left-pseudo inverse.
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D(f) is updated as

D(f) < R(X,&(f)) = P(X ©exp(§(f) @ X)) (16)
where retraction R(X,&(f)) maps £(f) to DPy, ©:

element-wise division, P(e): projection onto DPy
obtained using the Sinkhorn-Knopp algorithm

4. Evaluation

e Artificial impulse response Ty, = 200 - 500 ms

e 16-kHz sampling, 3072-point FFT ( 192 ms)

o N(= 2,3,4,5)-source cases

e Eight combination of IV utterances of males and
female speakers

¢ 40-dB signal-to-noise ratio
e Use L = 100 frames (9.6 s) and p = 1.0
e Use result of Sawada's method as initial condition
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Method 2ch 3ch 4ch 5ch
SU-FDICA 19.8 357 33.7 393
+ Sawada +01 +28 +53 +13.8
AuxIVA 3.6 6.0 8.5 12.1
ILRMA 232 414 575 76.2

SU -FDICA 19.8 3b.7 33.7 393
+Sawada-+Proposed +70.6 +74.7 +7/8.3 +89.3
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