External Division of Two Proximity Operators: An Application to Signal Recovery with Structured Sparsity Kyohei Suzuki, Masahiro Yukawa 1000 **ICASSP** Department of Electronics and Electrical Engineering, Keio University, Japan 2024 KOREA ICASSP 2024 in Seoul, Korea (14–19 Apr.)

Proposed Method Numerical Examples **Supervised Clustering External Division Operator** For estimation of sparse signals, \boldsymbol{A} x_{\star} estimation accuracy: firm shrinkage [1] > soft shrinkage $\operatorname{firm}_{\tau,\gamma}$ $|\boldsymbol{y}|$ =external division soft_{τ} _____ soft_{γ}

- ▶ Task: From given $y, A \in \mathbb{R}^{m \times n}$, estimate the sparse coefficients $oldsymbol{x}_{\star} \in \mathbb{R}^n$
 - \rightarrow Group the important variables based on \hat{x}

Paper ID: 3640

(SPTM-P1.3)

Keio University

Applications: gene expression analysis, brain imaging, protein-protein interaction

External division operator

For any
$$\gamma, \tau$$
 ($\gamma > \tau > 0$),

$$\begin{aligned}
& \text{firm}_{\tau,\gamma} = \frac{\gamma}{\gamma - \tau} \text{soft}_{\tau} - \frac{\tau}{\gamma - \tau} \text{soft}_{\gamma} \quad \text{(Proposition)} \\
&= \frac{\gamma}{\gamma - \tau} \text{Prox}_{\tau \parallel \cdot \parallel_{1}} - \frac{\tau}{\gamma - \tau} \text{Prox}_{\gamma \parallel \cdot \parallel_{1}} \\
& T_{\omega} \quad \coloneqq \quad \omega \text{Prox}_{g_{1}} - (\omega - 1) \text{Prox}_{g_{2}} \\
& (\omega > 1, g_{1}, g_{2} : \mathbb{R}^{n} \to \mathbb{R}: \text{ convex functions)}
\end{aligned}$$

Proposition 2

Proposition 3

Set $\psi_{\omega} \coloneqq \omega(\ {}^{1}(g_{1}^{*})) - (\omega - 1)(\ {}^{1}(g_{2}^{*})).$ Then, $T_{\omega} = \nabla \psi_{\omega}$. If ψ_{ω} is convex, T_{ω} is ω -Lipschitz continuous ($\Leftrightarrow \omega^{-1}$ -cocoercive).

 \blacktriangleright The Moreau envelope of $f : \mathbb{R}^n \to \mathbb{R}$ of index $\gamma > 0$ is defined as

$${}^{\gamma}f: \boldsymbol{x} \mapsto \min_{\boldsymbol{\xi} \in \mathbb{R}^n} \left(f(\boldsymbol{\xi}) + \frac{1}{2\gamma} \| \boldsymbol{x} - \boldsymbol{\xi} \|_2^2 \right)$$

The Fenchel conjugate of convex function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

Proposition 4

For any $\omega, \eta > 1$, $\psi_{\omega} \coloneqq \omega(\ ^1((\Omega_{\lambda_1,\lambda_2}^{\text{OSCAR}})^*)) - (\omega - 1)(\ ^1((\eta\Omega_{\lambda_1,\lambda_2}^{\text{OSCAR}})^*))$ is convex.

 $f^*: oldsymbol{z} \mapsto \sup_{oldsymbol{x} \in \mathbb{R}^n} \langle oldsymbol{x}, oldsymbol{z}
angle_2 - f(oldsymbol{x})$

Convergence Analysis

Suppress a given fidelity $f : \mathbb{R}^n \to \mathbb{R}$ while accomodating the prior information with the operator T_{ω} .

For a convex function ψ_{ω} , $T_{\omega} = \nabla \psi_{\omega}$ implies that [2] $T_{\omega} = \operatorname{Prox}_{\varphi_{\omega}} \qquad \left(\varphi_{\omega} \coloneqq \psi_{\omega}^* - \frac{1}{2} \|\cdot\|_2^2 \text{ is } (1 - \omega^{-1}) \text{-weakly convex}\right)$

Thanks to Proposition 2, if f is ρ -strongly convex, $\omega := (1 - \mu \rho)^{-1} > 1$, and $\mu \in \left(0, \frac{2}{\sigma + \rho}\right)$, the sequence $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ produced by

 $\boldsymbol{x}_{k+1} \coloneqq T_{\omega}(\boldsymbol{x}_k - \mu \nabla f(\boldsymbol{x}_k)) \quad (\mu > 0: \text{ step size})$

converges to a minimizer of the following problem [2]:

 $\min_{\boldsymbol{x}\in\mathbb{R}^n}\mu f(\boldsymbol{x})+\varphi_{\omega}(\boldsymbol{x}).$

Can we guarantee convergence even for the underdetermined linear systems?

▶ $f(\boldsymbol{x}) \coloneqq \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_2^2$ for $\boldsymbol{y} \in \mathbb{R}^m$ and $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with m < n

► f is strongly convex only on $\mathcal{M} := \text{Null}^{\perp}(\mathbf{A})$

- \rightarrow Convergence is guaranteed owing to Proposition 2.

Experiment

Measurement: $y = Ax_{\star} + \varepsilon \in \mathbb{R}^m$ ($\varepsilon \sim i.i.d. \mathcal{N}(0, \sigma_{\varepsilon}^2)$) **1.** dataset A (overdetermined, high correlation among variables) \blacktriangleright $A \in \mathbb{R}^{m \times n}$: generated from Gaussian distribution with mean 0, covariance $cov(\boldsymbol{a}_i, \boldsymbol{a}_j) = 0.7^{|i-j|} (m = 100, n = 40)$ $\mathbf{x}_{\star} \coloneqq [\underbrace{0 \dots 0}_{\star}, \underbrace{2 \dots 2}_{\star}, \underbrace{0 \dots 0}_{\star}, \underbrace{2 \dots 2}_{\star}]^{\mathsf{T}} \in \mathbb{R}^{40}$ 2. dataset B (overdetermined, low correlation among variables) Same as dataset A except that $A \sim i.i.d.$ standard Gaussian distribution **3.** dataset C (underdetermined) Same as dataset A except that m = 30, n = 60 and $\boldsymbol{x}_{\star} \coloneqq [\underbrace{0 \dots 0}_{10}, \underbrace{2 \dots 2}_{10}, \underbrace{0 \dots 0}_{10}, \underbrace{2 \dots 2}_{10}, \underbrace{0 \dots 0}_{20}]^{\mathsf{T}} \in \mathbb{R}^{60}$ SNR := $\frac{\|Ax_{\star}\|_{2}^{2}}{\|\mathbf{\varepsilon}\|_{2}^{2}}$: 20 dB, system mismatch := $\frac{\|\hat{x}-x_{\star}\|_{2}^{2}}{\|\mathbf{x}_{\star}\|_{2}^{2}}$ (\hat{x} : estimate) [dB][dB]lasso [dB]lasso — MC — MC mismatch 9utch mismatch ĠMC ---- OSCAR ---- OSCAR — DOSCAR — DOSCAR OSCAR -20angle -15 system -20system -30 DOSCAR 1000 100 20 40 iterations iterations iterations

Let $\mathcal{M} \subset \mathbb{R}^n$ be a subspace. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function such that (i) $f - \frac{p}{2} \|P_{\mathcal{M}} \cdot \|_2^2$ is convex

(ii) $\nabla f(\boldsymbol{x}) \in \mathcal{M}$ for all $\boldsymbol{x} \in \mathbb{R}^n$ (iii) ∇f is σ -Lipschitz continuous for $\rho, \sigma > 0$ ($\sigma \ge \rho$).

Let $g_1, g_2 : \mathbb{R}^n \to \mathbb{R}$ be convex such that ψ_{ω} is convex. Let $\mu \in \left(0, \frac{2}{\sigma + \rho}\right)$ be the step size parameter, and set $\omega \coloneqq (1 - \mu \rho)^{-1} > 1$. Then, given an arbitrary $\boldsymbol{x}_0 \in \mathbb{R}^n$, the sequence $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ produced by

 $\boldsymbol{x}_{k+1} \coloneqq T_{\omega}(\boldsymbol{x}_k - \mu(\nabla f(\boldsymbol{x}_k) + \rho P_{\mathcal{M}^{\perp}}\boldsymbol{x}_k)))$

converges to a minimizer of the following cost function if exists:

The debiased effect is restricted on \mathcal{M} while preserving the overall convexity.

(a) dataset A (high correlation) (c) dataset C (underdetermined case) (b) dataset B (low correlation)

2000

The performance of OSCAR deteriorates when the correlation is low.

Proposed method outperforms the other methods no matter if the explanatory variables have correlations.

Conclusion

- **1.** We studied the properties of the external division operator and proposed a debiased estimator for signals with structured sparsity.
- 2. The convergence conditions for the algorithm based on the external division were provided. 3. Numerical examples demonstrated that the performance of the proposed operator exhibits a significant improvement over that of OSCAR.

References

[1] H.-Y. Gao and A. G. Bruce, "Waveshrink with firm shrinkage," *Statistica Sinica*, vol. 7, no. 4, pp. 855–874, 1997. [2] M. Yukawa and I. Yamada, "Cocoercive Gradient Operator and Its Associated Weakly Convex Function: A Generalization of Moreau's Proximity Operator for Case of Unique Minimizer," Proc. IEICE Signal Processing Symposium, 2023.

[3] H.D. Bondell, and B.J. Reich, "Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR." Biometrics, 2007.