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Proposed Method

External Division Operator

For estimation of sparse signals,
estimation accuracy: firm shrinkage [1] > soft shrinkage
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External division operator
For any γ, τ (γ > τ > 0),

firmτ,γ = γ

γ − τ
softτ − τ

γ − τ
softγ (Proposition 1)

= γ

γ − τ
Proxτ∥·∥1 − τ

γ − τ
Proxγ∥·∥1

Tω := ωProxg1 − (ω − 1)Proxg2

(ω > 1, g1, g2 : Rn → R: convex functions)

generalization

Proposition 2
Set ψω := ω( 1(g∗

1)) − (ω − 1)( 1(g∗
2)).

Then, Tω = ∇ψω.
If ψω is convex, Tω is ω-Lipschitz continuous
(⇔ ω−1-cocoercive). 1(g∗1) 1(g∗2)ψω

ω

ω − 1

▶ The Moreau envelope of f : Rn → R of index γ > 0 is defined as

γf : x 7→ min
ξ∈Rn

(
f (ξ) + 1

2γ
∥x − ξ∥2

2

)
▶ The Fenchel conjugate of convex function f : Rn → R is defined as

f ∗ : z 7→ sup
x∈Rn

⟨x, z⟩2 − f (x)

Convergence Analysis
Suppress a given fidelity f : Rn → R while accomodating the prior information
with the operator Tω.

For a convex function ψω, Tω = ∇ψω implies that [2]

Tω = Proxφω
(
φω := ψ∗

ω − 1
2
∥ · ∥2

2 is (1 − ω−1)-weakly convex
)

Thanks to Proposition 2, if f is ρ-strongly convex, ω := (1 − µρ)−1 > 1, and

µ ∈
(

0, 2
σ + ρ

)
, the sequence (xk)k∈N produced by

xk+1 := Tω(xk − µ∇f (xk)) (µ > 0 : step size)
converges to a minimizer of the following problem [2]:

min
x∈Rn

µf (x) + φω(x).

Can we guarantee convergence even for
the underdetermined linear systems?

▶ f (x) := 1
2∥y − Ax∥2

2 for y ∈ Rm and A ∈ Rm×n with m < n

▶ f is strongly convex only on M := Null⊥(A)
Proposition 3

Let M ⊂ Rn be a subspace. Let f :Rn → R be a differentiable function such that

(i) f − ρ

2
∥PM · ∥2

2 is convex

(ii) ∇f (x) ∈ M for all x ∈ Rn

(iii) ∇f is σ-Lipschitz continuous for ρ, σ > 0 (σ ≥ ρ).

Let g1, g2 : Rn → R be convex such that ψω is convex. Let µ ∈
(

0, 2
σ + ρ

)
be

the step size parameter, and set ω := (1 − µρ)−1 > 1. Then, given an arbitrary
x0 ∈ Rn, the sequence (xk)k∈N produced by

xk+1 := Tω(xk − µ(∇f (xk) + ρPM⊥xk))
converges to a minimizer of the following cost function if exists:

µf︸︷︷︸
µρ-strongly convex on M,

convex on M⊥

+ φω + µρ

2
∥PM⊥ · ∥2

2︸ ︷︷ ︸
µρ-weakly convex on M,

convex on M⊥

The debiased effect is restricted on M while preserving the overall convexity.

Numerical Examples

Supervised Clustering

sparse coefficient

group 1 group 2 
(high correlation)

▶ Task: From given y, A ∈ Rm×n,
estimate the sparse coefficients
x⋆ ∈ Rn

→ Group the important variables
based on x̂

▶ Applications: gene expression
analysis, brain imaging,
protein-protein interaction
networks analysis, etc

Lasso tends to select only one variable from a group of highly correlated inputs

→ OSCAR (octagonal shrinkage and clustering algorithm for regression[3])

ΩOSCAR
λ1,λ2

: x 7→ λ1∥x∥1 + λ2
∑
i<j

max{|xi|, |xj|} Large penalty for
large coefficients

Specific example: Debiased OSCAR (DOSCAR)

TDOSCAR
λ1,λ2,ω,η

:= ω ProxΩOSCAR
λ1,λ2

−(ω − 1) ProxηΩOSCAR
λ1,λ2

(λ1, λ2 > 0, ω, η > 1)

sparsifying

grouping

large
estimation bias

sparsifying

grouping

preserving the values of 
large coefficients!

Proposition 4
For any ω, η > 1, ψω := ω( 1((ΩOSCAR

λ1,λ2
)∗)) − (ω − 1)( 1((ηΩOSCAR

λ1,λ2
)∗)) is convex.

→ Convergence is guaranteed owing to Proposition 2.

Experiment

Measurement: y = Ax⋆ + ε ∈ Rm (ε ∼ i.i.d. N (0, σ2
ε))

1. dataset A (overdetermined, high correlation among variables)
▶ A ∈ Rm×n: generated from Gaussian distribution with mean 0, covariance

cov(ai,aj) = 0.7|i−j| (m = 100, n = 40)
▶ x⋆ := [0 . . . 0︸ ︷︷ ︸

10

, 2 . . . 2︸ ︷︷ ︸
10

, 0 . . . 0︸ ︷︷ ︸
10

, 2 . . . 2︸ ︷︷ ︸
10

]T ∈ R40

2. dataset B (overdetermined, low correlation among variables)
▶ Same as dataset A except that A ∼ i.i.d. standard Gaussian distribution

3. dataset C (underdetermined)
▶ Same as dataset A except that m = 30, n = 60 and

x⋆ := [0 . . . 0︸ ︷︷ ︸
10

, 2 . . . 2︸ ︷︷ ︸
10

, 0 . . . 0︸ ︷︷ ︸
10

, 2 . . . 2︸ ︷︷ ︸
10

, 0 . . . 0︸ ︷︷ ︸
20

]T ∈ R60

SNR := ∥Ax⋆∥2
2

∥ε∥2
2

: 20 dB, system mismatch := ∥x̂−x⋆∥2
2

∥x⋆∥2
2

(x̂: estimate)
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(a) dataset A (high correlation)

0 20 40 60
iterations

−30

−20

−10

0

sy
st

em
m

is
m

at
ch

[d
B

]

lasso

MC

OSCAR

DOSCAR

(b) dataset B (low correlation) (c) dataset C (underdetermined case)

▶ The performance of OSCAR deteriorates when the correlation is low.
▶ Proposed method outperforms the other methods no matter if the

explanatory variables have correlations.

Conclusion
1. We studied the properties of the external division operator and proposed a debiased estimator

for signals with structured sparsity.
2. The convergence conditions for the algorithm based on the external division were provided.
3. Numerical examples demonstrated that the performance of the proposed operator exhibits a

significant improvement over that of OSCAR.
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