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1 Introduction
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• Phase estimation in single-channel speech enhancement
• Taking the noisy phase: the MMSE-sense optimal
• Complex mask/mapping
• Challenge: no pattern observed
• Pattern exists in phase gradients

∆f Φ(l ,m) = Φ(l ,m) − Φ(l ,m − 1) (1)
∆tΦ(l ,m) = Φ(l ,m) − Φ(l − 1,m) (2)

→ Estimate phase from clean magnitude (phase retrieval)

Figure 1: The amplitude, phase, and phase derivative of the clean speech.

2 Motivation
• Can we utilise the gradient information in speech enhancement?
• Phase retrieval solution: too artificial
• What’s missing: the initial phase estimate
• Idea: ground it by the initial phase estimate
• Our method: fuse
(a) Phase estimate from ∆tΦ(l ,m) (temporal derivative)
(b) Phase estimate from ∆f Φ(l ,m) (spectral derivative)
(c) Initial phase estimate
to get one consistent phase estimate for the enhanced speech

3 Phase Derivative Estimation
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• Loss function: L? =
∑
l ,m

(
1 − cos

( �∆?Φ(l ,m) − ∆?Φ(l ,m))) ,? ∈ {t , f }
• Training scheme: matched or agnostic?

4 Phase Reconstruction

• Goal: one consistent phase estimate based on the three di�erent estimates
• Minimise the distance between this final estimate z l and all sources
• Translated to the cost function:

J (z l ) =
z l − V̂l � ̂S l−1
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where z is the clean speech estimate.
→ The optimal solution:
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5 Evaluation Results

Dataset
• Training: DNS challenge 2021, 140 hours
• Test: DNS challenge 2020, synthetic test set

Objective metrics

Table 1: Averaged instrumental metrics on test set. Best results in bold.

Method segSNR STOI DNSMOS
[dB] OVRL SIG

Noisy 6.87 0.87 2.53 3.33
CRUSE 13.74 0.93 3.10 3.36

CRUSE-Agnostic 14.30 0.93 3.17 3.43
CRUSE-Matched 14.19 0.93 3.17 3.44

C-CRUSE 13.92 0.93 3.14 3.40
C-CRUSE-Agnostic 14.45 0.93 3.20 3.45

CRUSE-OraclePhase 14.51 0.94 3.17 3.43
C-CRUSE-OraclePhase 14.77 0.94 3.20 3.45

DNSMOS Distribution
• subset a) mixtures with stationary or short-term stationary noise
• subset b) mixtures with sparse, transient noise

• Phase enhancement
• improves all metrics
• is comparable to using oracle phase

• Boosts signal quality in poor SNR conditions
• For stationary noise: SE-Matched > SE-Agnostic
• For sparse noise: SE-Agnostic > SE-Matched

Spectrogram Samples

Figure 2: Noisy signal: Street noise, -2 dB.

• Similar performance in high SNR regions
• More continuous harmonics by the proposed phase reconstruction

6 Conclusions
• Incorporating initial phase estimate for natural-sounding output
• Improvement reflected in objective audio quality metrics
• Compatible with real- or complex-domain methods
• Matched/agnostic methods suit di�erent noise types
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