#### 1 **Real-Time Privacy-Preserving Fall Risk Assessment** ICASSP with a Single Body-Worn Tracking Camera 2024 KOREA

Chiao-Yi Wang<sup>1</sup>, Faranguisse Kakhi Sadrieh<sup>1</sup>, Yi-Ting Shen<sup>2</sup>, Giovanni Oppizzi<sup>1</sup>, Li-Qun Zhang<sup>1</sup>, Yang Tao<sup>1</sup> <sup>1</sup>Department of Bioengineering, University of Maryland, College Park, USA <sup>1</sup>Department of Electrical and Computer Engineering, University of Maryland, College Park, USA

## Introduction

### Motivation

- Falls are the leading cause of injuries among elderly adults.
- 30% of elderly adults in the US experience at least one fall each year.
- We need fall risk assessment !

# Two biomechanical causes for slip-induced falls

• Unrecoverable collapse of limbs in the vertical direction



(b) A-P Unstable

(c) M-L Unstable

- Instability in the anterior-posterior (A-P), medial-lateral (M-L) or both directions. (a) Normal

### Existing methods & Challenge for fall risk assessment

- Sensors around the subject's surrounding environment (e.g. RGB cameras or radar sensors)  $\rightarrow$  Privacy concerns
- Sensors on the subject's body (e.g. IMUs)  $\rightarrow$  Requires more than one sensor, sensor drift





#### **Experiments & Results**

### Dataset

- We collect 30 camera pose sequences for each of the 3 different walking types: normal, M-L unstable, A-P unstable.
- Total: 15 subjects. (Training: 10, test: 3, validation: 2.)



| Walking Type | Training Set | Test Set | Validation Set |
|--------------|--------------|----------|----------------|
| Normal       | 4567         | 1107     | 1299           |
| M-L Unstable | 8156         | 2618     | 1665           |
| A-P Unstable | 6764         | 2355     | 1661           |

### Main results

| Method                 | Accuracy                           | Precision                         | Recall                             | <b>F</b> 1                         | Parameters (k) | Runtime (ms) |
|------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|----------------|--------------|
| SVM                    | 0.46                               | 0.30                              | 0.44                               | 0.35                               | _              | _            |
| CNN                    | $0.90\pm0.034$                     | $0.91 \pm 0.037$                  | $0.91\pm0.033$                     | $0.90\pm0.034$                     | 5.5            | 0.15         |
| LSTM                   | $0.77 \pm 0.041$                   | $0.77 \pm 0.049$                  | $0.77\pm0.049$                     | $0.76\pm0.045$                     | 3.8            | 2            |
| Transformer            | $0.87 \pm 0.045$                   | $0.86\pm0.049$                    | $0.89\pm0.029$                     | $0.86 \pm 0.048$                   | 3.6            | 0.63         |
| CNN-LSTM               | $0.78\pm0.133$                     | $0.77 \pm 0.127$                  | $0.77\pm0.148$                     | $0.76 \pm 0.143$                   | 7.8            | 1.25         |
| CNN-Transformer (Raw)  | $0.58 \pm 0.031$                   | $0.57 \pm 0.032$                  | $0.59 \pm 0.044$                   | $0.57 \pm 0.039$                   | 6.8            | 0.69         |
| CNN-Transformer (Ours) | $\textbf{0.93} \pm \textbf{0.009}$ | $\textbf{0.92} \pm \textbf{0.01}$ | $\textbf{0.93} \pm \textbf{0.003}$ | $\textbf{0.93} \pm \textbf{0.007}$ | 6.8            | 0.69         |