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Abstract

Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks
across multiple devices while preserving data privacy. Despite its potential benefits, FL is hindered by
excessive communication costs due to repeated server-client communication during training. To address this
challenge, model compression techniques, such as sparsification and weight clustering are applied, which
often require modifying the underlying model aggregation schemes or involve cumbersome hyperparameter
tuning, with the latter not only adjusts the model’s compression rate but also limits model’s potential for
continuous improvement over growing data. In this paper, we propose FedCompress1, a novel approach
that combines dynamic weight clustering and server-side knowledge distillation to reduce communication
costs while learning highly generalizable models. Through a comprehensive evaluation on diverse public
datasets, we demonstrate the efficacy of our approach compared to baselines in terms of communication
costs and inference speed.

Federated learning (FL) enables collaborative training of neural network models directly on edge devices
(referred to as clients), preserving on-device data locally Konečný et al. (2016). FL is composed of multiple
federated rounds, which involve server-to-client model updates dispatch, local training by clients, and
server-side aggregation (e.g., FedAvg McMahan et al. (2017)) of clients’ model updates, iteratively performed
until model convergence. Despite its appealing properties for users’ privacy, FL requires constant model
transportation between server and clients, which poses a challenge in terms of communication efficiency. This
becomes evenmore critical when the clients are resource-constrained edge deviceswith limited computational
capabilities and strict energy constraints.

To address the communication overhead in FL, recent studies have explored model compression schemes on
the exchanged model updates to minimize the communication overhead. Sparsification Stich et al. (2018)
involves discarding network segments to reduce the overall model’s complexity based on a threshold value.
FedSparsify Stripelis et al. (2022) utilizes magnitude pruning with a gradually increasing threshold during
training to learn a highly-sparse model in a communication-efficient FL scheme. Alternatively, weight
clustering Han et al. (2015) converts the weight matrices elements into a discrete set of values (clusters)
to achieve high model compression ratio. MUCSC Cui et al. (2021) utilizes layer-wise weight clustering
using a fixed number of clusters to communicate compressed model updates from clients to server. Likewise,
FedZip Malekijoo et al. (2021) employs a sequence of pruning and weight clustering to further improve the
compression ratio. Apart from these model compression schemes, knowledge distillation Wu et al. (2022)
and sub-model training Rabbani et al. (2023); Niu et al. (2023) have being explored to reduce communication
costs. However, the aforementioned techniques require modifications to the underlying model aggregation
algorithm and solely focus in optimizing the client-to-server (upstream) communication route. Furthermore,
existingweight clustering schemes in FL rely on a fixed set of clusters, limitingmodel’s potential for continuous
improvement over growing data.

We propose FedCompress (Federated Learning with Dynamic Weight Clustering for Model Compression) to achieve
significant communication reductions in the bidirectional communication route during FL training, while

1https://github.com/FederatedML/FedCompress
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Figure 1: Illustration of FedCompress for communication-efficient FL. A dual-stage compression scheme is proposed: (i) weight
clustering across clients during on-device training, and (ii) self-compression on server-side combining weight clustering with knowledge
distillation on out-of-distribution data.

maintaining the representational power of models and achieving highly compressed models. Naively
applying weight clustering during local updates in FL yields limited compression benefits for the aggregated
model, as clients’ models form diverse clusters during compression due to the statistical heterogeneity among
clients. Consequently, the centroid-based structure of the aggregated model weights is compromised, once
the server-side aggregation is applied Briggs et al. (2020). To overcome this issue with no modifications in
the underlying aggregation strategy, we apply the knowledge distillation Hinton et al. (2015) scheme using
out-of-distribution data after model aggregation at the server. In this way, we perform self-compression
on the aggregated model, enforcing the centroid-like structure and reducing communication costs in the
downstream communication channel for the next federated round.

Aside from the server-side compression, we balance the trade-off between model performance and com-
munication efficiency by finding a suitable number of clusters during the FL process. To this end, we start
with a small number of clusters for each layer and dynamically adjust them as federated rounds progress
by monitoring the representational power of clients’ models. In particular, we propose a representation
quality score, which is computed locally at each client using a small unlabelled set of clients’ available data.
Concisely, the main contributions of our work are as follows:

• We propose FedCompress, a communication efficient FL approach that combines weight clustering
and knowledge distillation on out-of-distribution data to achieve highly compressed models, with no
modifications to the underlying weights’ aggregation algorithm.

• We introduce a representation quality score, locally computed based on clients’ unlabelled data, to
dynamically adjust the number of clusters utilized during weight clustering.

• We demonstrate that proposed method is highly effective for learning generalizable compressed
federated models on diverse public datasets from both vision and audio domains, namely CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), PathMNIST Yang et al. (2021), Speech-
Commands Warden (2018) and VoxForge MacLean (2018).

• Our evaluation of FedCompress shows on average a 4.5-fold reduction in communication costs during
training and a 1.13-fold speedup during inference on edge accelerator devices when compared to
FedAvg across considered datasets.
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1 Methodology

1.1 Problem Formulation

We focus on the problem of federated model compression to overcome the high communication-burden in
FL and offer notable inference speedup on edge devices as a by-product. Formally, we assume that each
of theK clients has a labeled and a small validation (unlabeled) dataset, denoted by Dk

l = {xi, yi}
Nk

l
i=1, and

Dk
u = {xi}

Nk
u

i=1, respectively. Furthermore, server possesses an OOD dataset, S = {xi}Ns
i=1, which can have no

statistical similarity with clients locally stored data. We aim to learn a compressed global model, pθ̃ without
clients sharing locally stored data, Dl and Du, with the server and reduce the communication burden during
FL training phase. Here, we denote with pθ a neural network with weights θ, while p̃kθ and θ̃ refer to the
weight-clustered (compressed) versions of pθ and θ, respectively.

1.2 Federated Model Compression

We propose FedCompress, a two-stage compression scheme for bi-directional communication reduction
during training in FL. During local model training, we simultaneously train and compress clients’ models
using weight-clustering to reduce the upstream communication costs. To maintain a highly compressed
model once server-side model aggregation is complete, we employ a novel model compression scheme that
utilizes OOD data to minimize the downstream communication burden, while maintaining high model
performance. Furthermore, To strike a balance between model performance and communication efficiency
trade-off, we propose a dynamically adaptive weight-clustering approach to monitor and update the number
of clusters based on the representational power of clients’ models, allowing FedCompress to adapt to the
underlying task’s complexity.

Client-side Model Compression: During the local model update step, we initially apply standard cross-
entropy to each of the k client’s labeled datasets, Dk

l , while simultaneously enforcing the weights θ to cluster
around a set ofC learnable centroids, µ. Specifically, each client’s minimization objective is defined as follows:

minθ Lk(θk) = Lce(pθk(Dk
l )) + β · Lwc(θk, µ, C) (1)

Here, Lce is the cross-entropy loss function for the model pθ on the labeled datasetDk
l . We use β to control the

relative impact ofLce andLwc. As the initial centroids are important tomaintainmodel’s high representational
power, we allow for a few training rounds using Lce before introducing Lwc. In essence, we start each local
FL training step with β=0 for a few epochs and afterwards setting β=1.

Self-Compression on Server: Once the server has constructed a new global model from the received model
updates, the centroid-shape structure of model weights is compromised, making it challenging to maintain a
compressed model for downstream communication. To solve this problem, we propose a self-compression
mechanism that combines weight clustering and knowledge distillation on OOD data, S, at the server side.
This mechanism involves training a compressed version of the original global model (i.e., the teacher), which
acts as a student that aims to mimic the behavior of its teacher on the OOD data.

In this way, we enforce the model weights to cluster around a set of C learnable centroids, similar to the
client-side compression, while recovering any performance degradation due to weight-clustering. As a loss
function to this teacher-student architecture, we utilize the Kullback-Leibler divergence (KLD) loss, which
aims to match the output distributions of the models. Specifically, the objective function of the proposed
server-side self-compression approach is as follows:
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min
θ
Ls(θ) = Lkl (pθT || pθ) + β · Lwc(θ, µ, C)

= λ2 ·
∑
x∈S

pλθT (x) log
pλθT (x)

pλθ (x)
+ β ·

C∑
j=1

Ns∑
i=1

uij ||θi − µj ||2
(2)

where λ is a temperature scalar, Lwc is the cross-entropy loss, Lkl is the KLD loss being computed using pλθT
and pλθ the λ-scaled logits of teacher and student models, respectively.

Onemay note that no labels are required to enforce the alignment of distributions, thus any unlabelled dataset
available on the server can be utilized to perform the self-compression. Furthermore, with no modifications
required to the underlying model aggregation mechanism (e.g., FedAvg), our method provides a readily
usable solution to any existing FL systems to reduce the downstream communication costs.

Dynamic Weight-Clustering: While model compression via weight clustering can result in highly accurate
compressed models, its performance is directly affected by selecting a proper number of clusters, C. Espe-
cially, in FL, where clients have heterogeneous data distributions, a suitable number of clusters can vary
significantly based on the heterogeneity of clients and their local data distributions. We propose dynamically
adjusting the number of clusters based on clients models’ representational power. In particular, we assess
model’s performance using embeddings from the penultimate layer of the model, where we use the rank of
embeddings as a proxy of their generalization quality Roy and Vetterli (2007). This representation quality
score is computed locally on client’s unlabeled dataset Dk

u.

Formally, with the completion of the local training step on k-th client, we extract the embeddings Zk from
Dk

u using client’s model pθk , and afterwards compute the score, Ek using exp(−
∑mZk

j=1 rj log rj), where rj
denoting the ranking of j-th singular value of Zk ( σj

|σZk |1 ) and mZk denotes the minimum dimension of
embeddings. To ensure numerical stability, we add a small constant equal to 1e−7 in the computation of rj .
During the server-side model aggregation step in each federated round, we compute the weighted-averaged
representation quality score E of participating clients models, similar to FedAvg.

To ensure that the model is compressed efficiently, we start with a small value for C (i.e., minimum number
of clusters - Cmin), incrementing it when the moving average of E over a window W shows no improvement
in the previous P rounds. We fix W=3 and P=3, which we determine to be working well during our initial
exploration. Furthermore, our approach allows for a maximum communication budget to be specified prior
to FL training (e.g. based on an energy consumption profile) to update C between two boundary values,
[Cmin, Cmax]. Further details and an overview of our proposed FedCompress approach for communication-
efficient FL can be found in Algorithm 1.

2 Evaluation

Datasets: We use publicly available datasets from both the vision and audio domains with their standard
training/test splits. Specifically, we use the CIFAR-10/100 Krizhevsky et al. (2009) and PathMNIST Yang
et al. (2021) datasets, where the tasks of interests are object detection and pathology reporting, respectively.
Likewise, from the audio domain, we use SpeechCommands Warden (2018) for keyword spotting (12 classes
in total), and VoxForge MacLean (2018) for language identification. As OOD datasets for self-compression
on server, we use StyleGAN (Oriented) Baradad Jurjo et al. (2021) and Librispeech Panayotov et al. (2015) for
our vision and audio recognition tasks, respectively. However, we note that augmented patches (or segments
in case of audio) from a single image can also be used as OOD data Asano and Saeed (2023).

Experimental Setup: We utilize ResNet-20 He et al. (2016) for the vision domain, while we choose Mo-
bileNet Howard et al. (2017) for the considered audio recognition task. These models were chosen based on
their performance, suitability for on-device learning, where computational resources are limited compared
to centralized settings, and extensive validation in previous research Tsouvalas et al. (2022). To simulate a
federated environment, we use Flower Beutel et al. (2020) with FedAvg McMahan et al. (2017) to construct
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Table 1: Experimental results reporting Communication Compression Reduction (CCR), Model Compression Ratio
(MCR) and accuracy difference δ-Acc versus standard FedAvg for FedZip Malekijoo et al. (2021) and FedCompress (with
and without Self-Compression on Server - SCS). Results are reported across five datasets, while CCR and MCR are
indicating an n-fold reduction from the standard FedAvg results. Federated parameters are set to R=20, M=20, Ec=10,
Es=10, and σ=25%.

Dataset FedAvg
Accuracy

FedZip Malekijoo et al. (2021) FedCompress (w/o SCS) FedCompress
δ-Acc CCR MCR δ-Acc CCR MCR δ-Acc CCR MCR

CIFAR-10 86.26 -1.89 1.91 2.08 -1.47 1.02 1.77 -1.83 4.53 5.18
CIFAR-100 60.68 -2.57 1.94 2.11 -2.67 1.02 1.62 -1.88 3.80 3.93
PathMNIST 88.22 -3.04 1.92 2.10 -3.57 1.06 1.82 -1.72 4.79 5.27
SpeechCommands 95.75 -0.82 1.66 1.88 -0.72 1.06 1.72 -0.42 5.04 5.09
VoxForge 81.05 -1.04 1.69 1.91 0.75 1.11 1.81 -0.31 5.41 5.64

the global model from clients’ local updates. We control the federated setting in our experiments with the
following parameters: 1) number of clients - M=20, 2) number of rounds - R=20, 3) local train epochs -
Ec=10, server self-compression training epochs - Es=10, 4) data distribution variance across clients - σ=25%.
We randomly partitioned the datasets across the available clients in a non-overlapping fashion.

From the related approaches in the literature, we performed experiments using FedZip Malekijoo et al. (2021)
with number of clusters fixed to 15 (which we find to work well for the considered tasks after preliminary
experimentation), while compared both FedCompress and FedZip performances in terms of test set accuracy,
communication-cost reduction (CCR), and model compression ratio (MCR) with respect to the standard
FedAvg. For a rigorous review, we manage any randomness during data partitioning and training procedures
with a seed value and performed two distinct trials, reporting the average accuracy on test sets.

Results: In Table 1, we report our findings across all datasets and compare FedCompress performance
with the considered baselines. As indicated from δ-Acc (accuracy versus standard FedAvg) columns in
Table 1, FedCompress outperforms FedZip across all considered datasets and yields compressed federated
models with comparable performance to FedAvg, while achieving significant reductions in communication
costs. On audio-based tasks, where the MobileNet model was utilized, we observe over a 5-fold reduction in
communication costs (CCR), while keeping models’ accuracy within 0.5% of the standard FL process. In the
vision domain, our approach remains equally effective, with a CCR of 4.28, while suffering an accuracy drop
of approximately 2.14% across all image dataset.

Figure 2: Relationship between mean representation quality score and mean validation accuracy across clients during
FL training for FedCompress on CIFAR-10 and SpeechCommmands. Strong positive correlation is observed, indicating
that the representation quality score is a useful indicator of the clients models’ representational power.

Overall, an average 4.5-fold CCR is achieved throughout all five datasets, suggesting thatFedCompress can
effectively reduce the communication costs in FL without sacrificing models’ accuracy. These results indicate
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Table 2: Inference time acceleration of diverse edge devices for ResNet-20 and MobileNet on CIFAR-10 and SpeechCom-
mands datasets, respectively. The reported inference time acceleration is achieved by comparing to FL models using
FedAvg.

Model Device float32 uint8 (Quantized)

ResNet-20 Pixel 6 ×1.103 ×1.165
Jetson Nano ×1.127 ×1.169
Coral TPU ×1.113 ×1.191

MobileNet Pixel 6 × 1.114 ×1.248
Jetson Nano ×1.137 ×1.161
Coral TPU ×1.152 ×1.194

the potential for significant energy savings and reduced communication bandwidth requirements in FL,
both crucial for resource-constrained devices and Internet of Things (IoT). Apart from the reduction in
communication costs, FedCompress demonstrates a significant reduction in resulting model size. We observe
an average MCR of 4.14 across all datasets, indicating that our approach can effectively compress models
without sacrificing their accuracy. The highly compressed models offer additional benefits to edge devices,
such as lower memory requirements and reduced energy consumption during training and inference. This,
in turn, allows for more complex models to be deployed on edge devices with limited resources.

To validate the utilization of our representation quality score as an indicator of models’ representation power,
we compute the score and the validation accuracy across clients in each federated round on CIFAR-10 and
SpeechCommands and compared their progression. Figure 2 shows a strong correlation between the two
metrics, indicating that the models’ representation quality metric is a valuable alternative to the validation
accuracy, while it can be efficiently computed from clients models’ embeddings with no need for having
labeled data. Since unlabeled data are often readily available on edge devices, our score can effectively act as a
proxy to dynamically set the number of clusters during training, providing a lightweight and fast alternative
for measuring models’ representational power.

We also conducted experiments on various edge devices to evaluate the impact of our compression approach
on inference time. Table 2 shows that our approach can accelerate the inference time on all these devices,
while maintaining comparable accuracy to FedAvg as shown in Table 1. Notably, FedCompress models
demonstrate an acceleration of up to 1.15× across the edge devices, while quantizing the models to uint8
achieves an inference speedup up to 1.24×. Consequently, FedCompress provides the ability to achieve
faster inference times with minimal effect on federated models’ accuracy, providing significant benefits for
resource-constrained edge devices, where low power consumption and reduced inference time are crucial.

3 Conclusion

We presented FedCompress, a communication-efficient FL approach based on model-compression via weight
clustering and knowledge distillation. It can be easily integrated with existing FL frameworks, requiring
no modifications to the FL aggregation strategy. Our experiments across multiple datasets showed that our
approach can achieve significant reductions in communication costs and model sizes, while maintaining
comparable accuracy to the standard FL process. Moreover, we have shown that our proposed embeddings-
based representation quality score can effectively act as a proxy for models’ representational power, allowing
for a dynamic adjustment of the number of clusters during training based on the underlying task’s complexity.
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A FedCompress Algorithm

We provide the pseudocode for FedCompress in Algorithm 1.

Algorithm 1 FedCompress: Federated Learning with AdaptiveWeight Clustering and Server-Side Distillation for Model
Compression. We develop a two-stage model compression approach to reduce the communication burden in FL and
offer inference speedups in edge devices. FedAvg McMahan et al. (2017) is the base algorithm, whereas ηs and ηc refers
to the learning rates of server and clients, respectively.

1: Server initialization of model with model weights θ0, C=Cmin

2: for i = 1, . . . , R do
3: Randomly select K clients to participate in round i
4: for each client k ∈ K in parallel do
5: (θi+1

k , E i+1
k )← ClientUpdate(θi,Ci)

6: end for
7: θi+1 ←

∑K
k=1

Nk

N θi+1
k , E i+1 ←

∑K
k=1

Nk

N E i+1
k

8: θi+1← SelfCompress(θi,Ci)

9: Ci+1 ← Ci + sgn

∣∣∣∣MA(E i+1)−
P

min
j=1

MA(E i−j+1)

∣∣∣∣
10: end for
11: procedure ClientUpdate(θ,C)
12: for epoch e = 1, 2, . . . , Ec do
13: for batch b ∈ Dl do
14: θ ← θ − ηc · ∇θ (Lce (pθ (b)) + β · Lwc (θ, µ, C))
15: end for
16: end for
17: E ← E(pθ(Du))
18: return (θ, E)
19: end procedure
20: procedure SelfCompress(θ,C)
21: for epoch e = 1, 2, . . . , Es do
22: θ⋆ ← θ
23: for batch b ∈ S do
24: θ ← θ − ηs · ∇θ (Lkl (pθ⋆(b) || pθ(b)) + βs · Lwc(θ, µ, C))
25: end for
26: end for
27: return θ
28: end procedure

9


	Methodology
	Problem Formulation
	Federated Model Compression

	Evaluation
	Conclusion
	FedCompress Algorithm

