Partially observable model-based learning for ISAC resource allocation

Aalto University School of Electrical Engineering

2024 Korea

Petteri Pulkkinen^{1,2} & Visa Koivunen¹

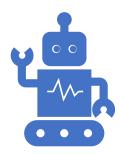
¹ Department of Information and Communications Engineering, Aalto University

² Saab Finland Oy

Introduction

- Integrated Sensing And Communications (ISAC) is a key new technology for 6G wireless systems and beyond
 - Radar sensing and wireless communication are codesigned for mutual benefit
- ISAC systems reduce the system cost and power consumption while also mitigating congestion in the radio spectrum
- We consider rapidly time-frequency-space varying shared spectrum scenarios
 - RF systems **dynamically** use the spectrum
 - Mobility of transmitters and receivers
- Online (machine) learning facilitates using the spectrum optimally in dynamic shared spectrum scenarios
 - Actively learn to allocate resources in time-frequencyspace dimensions

Prior work and contributions



In our prior work:

We developed **model-free** and **model-based** online learning algorithms that learn **dynamic power allocation and sub-carrier selection** policies from experience

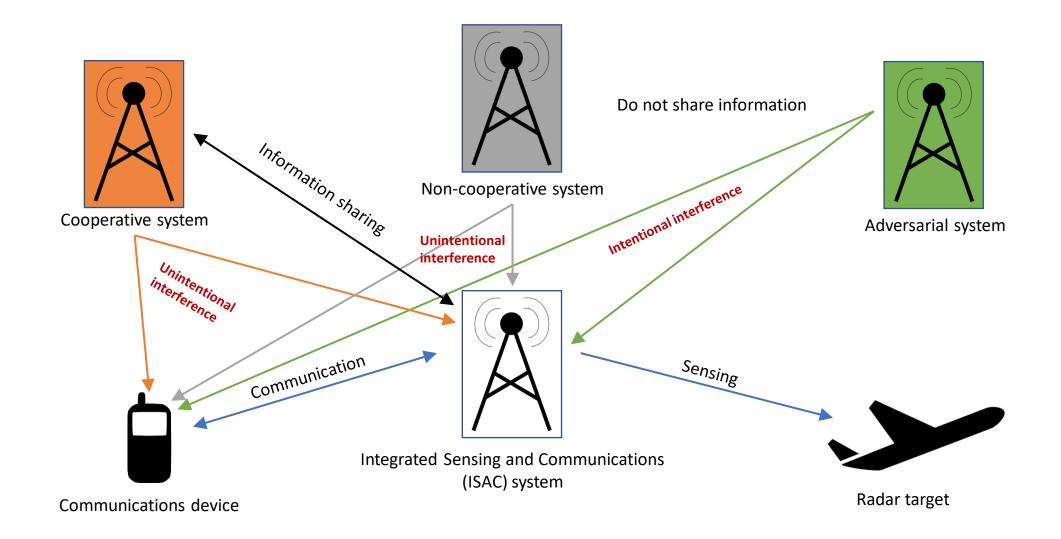
We established **bounds of the convergence rates** for the model-based approach

In this presentation:

The model-based approach **extended to** learning from noisy spectrum observations (**partially observable setting**)

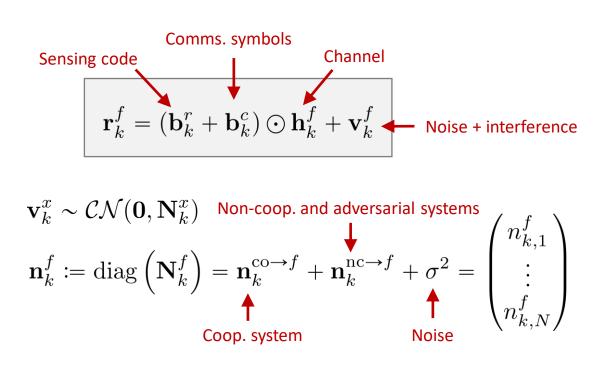
The performance of the proposed methods are empirically evaluated in dynamic shared spectrum scenarios

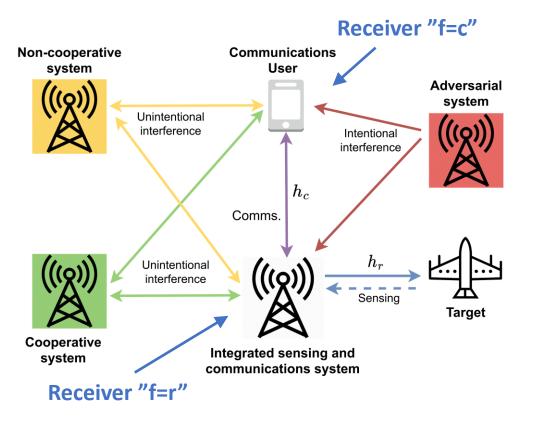
Considered shared spectrum scenario



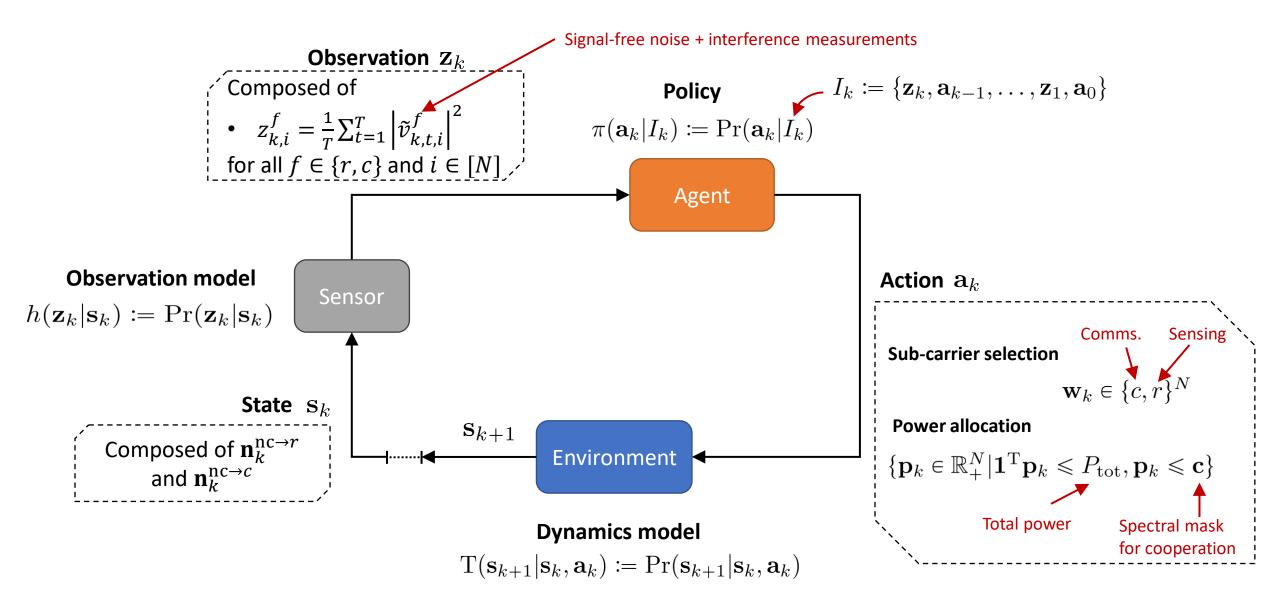
Signal model

- "Time slotted" model used:
 - Channel and interference assumed Wide Sense Stationary (WSS) over single observation period k
- Orthogonal multicarrier signal model with N sub-carriers (e.g., OFDM)
- Diagonal frequency-domain channel and interference plus noise covariance matrices
 - Circulant approximation of Toeplitz structure in time-domain
- Signal model in **frequency domain** at receiver $f \in \{r, c\}$:



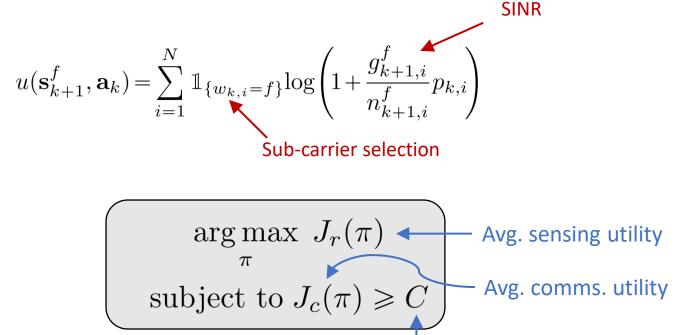


Considered POMDP model



Optimization objective

Utility function: Sensing: Mutual information (MI) between received signal and target scattering matrix Comms.: Communications MI (i.e., rate)



Comms. rate requirement

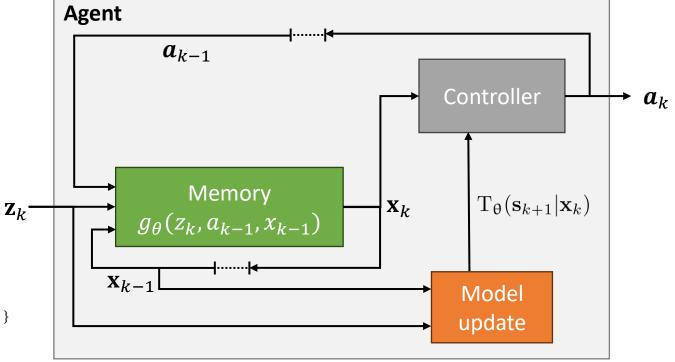
Partially observable model-based learning (POMBL)

• The POMBL memory is recursive:

 $\mathbf{x}_k = g_{\theta}(\mathbf{z}_k, \mathbf{a}_{k-1}, \mathbf{x}_{k-1})$

- For example: windowing or recursive neural networks
- POMBL agent learns a transition model: $T_{\theta}(\mathbf{s}_{k+1}|\mathbf{x}_k) = \Pr(S_{k+1} = \mathbf{s}_{k+1}|X_k = \mathbf{x}_k)$
- Suppose pre-determined set of interference levels: $s_{k,i}^f \coloneqq n_{k,i}^{\mathrm{nc} \to f} \in \{\sigma_j^2\}_{j=1}^L$
- The model for $f \in \{r, c\}$ can be written as:

$$\mathbf{T}_{\boldsymbol{\theta}}(\mathbf{s}_{k+1}^{f}|\mathbf{x}_{k}^{f}) = \prod_{i=1}^{N} \prod_{j=1}^{L} \left[\phi_{i,j}^{f}(\mathbf{x}_{k}^{f}, \boldsymbol{\theta}) \right]^{\mathbb{I}_{\{s_{k+1,i}^{f} = \sigma_{j}^{2}\}}}$$



learned probability masses

Model learning problem

- The model is learnt online by "sampling" from the real environment
- Indicate quantized states as: $Y_{k,i,j} = \mathbb{1}_{\{s_{k,i} = \sigma_j^2\}}$
- The POMBL minimizes cross-entropy minimization loss (i.e., the KL divergence):

$$L(\theta) = - \mathop{\mathbb{E}}_{\mathbf{s}_k, \mathbf{x}_{k-1}} \left[\sum_{i=1}^N \sum_{j=1}^L Y_{k,i,j} \log \phi_{i,j}(\mathbf{x}_{k-1}, \theta) \right]$$

Not observable to the agent \rightarrow this objective cannot be directly minimized

- The unobservability problem is like one faced in "classification with noisy labels" problem in the context of machine learning
 - Addressed with methods based on loss-correction¹
 - Find loss function that effectively optimizes $L(\mathbf{\theta})$

¹G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, "Making deep neural networks robust to label noise: A loss correction approach," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2233–2241, 2017.

Backward loss correction method

- Use detector (e.g., maximum likelihood) to estimate Y_k :
 - Detector $D_i(z_{k,i}) \in \{0,1\}^L$ outputs one-hot encoded vector indicated the detected state
- We can compute the confusion matrix using model *h*:

$$\mathbf{U}_{i} = \left[\mathbb{E}\left[D_{i}(z_{k,i}) | s_{k,i} = \sigma_{1}^{2} \right], \dots, \mathbb{E}\left[D_{i}(z_{k,i}) | s_{k,i} = \sigma_{L}^{2} \right] \right]$$

• Unbiased gradient estimator can be written as:

$$\widehat{\nabla}_{\theta} L(\theta) = -\sum_{i=1}^{N} \sum_{j=1}^{L} [\mathbf{U}_{i}^{-1} D_{i}(\mathbf{z}_{k})]_{j} \nabla_{\theta} \log \phi_{i,j}(\mathbf{x}_{k-1}, \theta)$$

- where $\mathbb{E}\left[\mathbf{U}_{i}^{-1}D_{i}(z_{k,i})|s_{k,i}=\sigma_{j}^{2}\right]=\mathbf{e}_{j} \forall j \in [L], i \in [N]$
- The condition number may be large for difficult observation models, inevitably increasing the gradient estimator variance

¹G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, "Making deep neural networks robust to label noise: A loss correction approach," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2233–2241, 2017.

Forward loss correction method

• Consider a surrogate objective (effectively the same¹):

$$\widehat{L}(\theta) = \mathbb{E}_{\mathbf{z}_k, \mathbf{x}_{k-1}} \left[\log \Pr(\mathbf{z}_k | \mathbf{x}_{k-1}, \theta) \right]$$

• By definition, can be written as:

$$\widehat{L}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{z}_k, \mathbf{x}_{k-1}} \left[\sum_{i=1}^N \log \sum_{j=1}^L h(z_{k,i} | s_{k,i} = \sigma_j^2) \phi_{i,j}(\mathbf{x}_{k-1}, \boldsymbol{\theta}) \right]$$

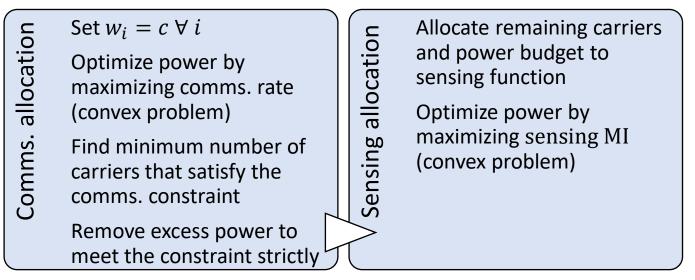
Known probability density for the observations

¹G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, "Making deep neural networks robust to label noise: A loss correction approach," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2233–2241, 2017.

The controller

• Expected utility given
$$\mathbf{x}_{k}^{f}$$
: $J_{\theta}(\mathbf{x}_{k}^{f}, \mathbf{a}) = \sum_{i=1}^{N} \sum_{j=1}^{L} \mathbb{1}_{\{w_{k,i}=f\}} \phi_{i,j}(\mathbf{x}_{k}^{f}, \theta) \log \left(1 + \frac{g_{k+1,i}^{f}}{n_{k+1,i}^{co \to f} + \sigma_{j}^{2} + \sigma^{2}} p_{k,i}\right)$
• Objective: $\arg \max_{\mathbf{a} \in \mathcal{A}} J_{\theta}(\mathbf{x}_{k}^{r}, \mathbf{a})$ (1a)
 $\operatorname{s.t.} J_{\theta}(\mathbf{x}_{k}^{c}, \mathbf{a}) \ge C$ (1b)

• The controller problem is non-convex \rightarrow the following procedure is used



Numerical examples

- Simulate multiple dynamic interference sources within the considered bandwidth
- Each source modelled using two Markov chains
 - One determines the probabilities for changing subchannels
 - One determines the interference power between subsequent time slots
- We compare different memory and model architectures when the learning labels Y_k are fully observable
- The loss correction methods are compared where all use the same (best) architecture

Table 1: Simulation parameters.

Parameter	Symbol	Value
# of subcarriers	$\mid N$	16
Capacity req.	C	3
Power	$P_{\rm tot}$	3
Ch. gain	$g_i \; \forall i \in [N]$	1e-2
Noise power	σ^2	1e-3
# of interf. levels	$\mid L$	6 (easy), 16 (difficult)
# of sigfree meas.	$\mid T$	1
# of interf. sources		12

Architecture comparison

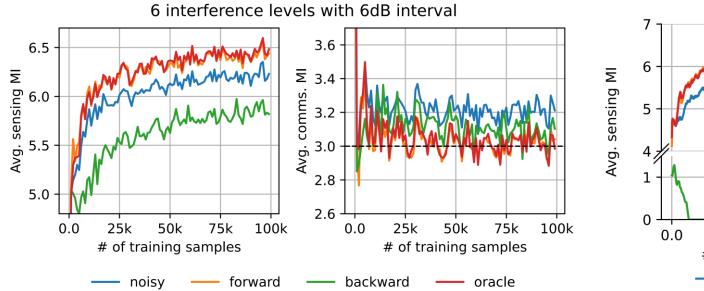
Name	Memory	Model
Linear	No memory	Generalized linear
Linear W.	Windowed	Generalized linear
Non-linear	No memory	Fully connected neural network (FNN) w. Softmax output layer
Non-linear W.	Windowed	//
LSTM	LSTM	//

 Table 2: Performance with different architectures.

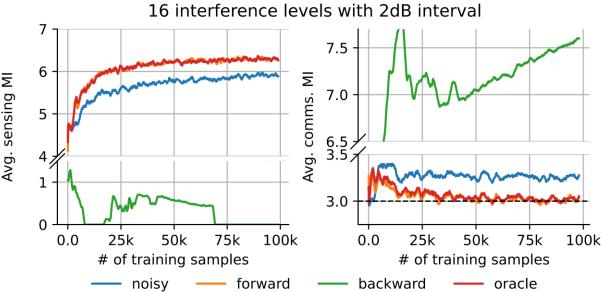
Architecture	MI (sensing)	MI (comms.)	Model loss
LSTM	6.71	3.0	2.93
Non-linear W.	6.55	2.96	2.98
Linear W.	6.63	2.9	3.02
Linear	6.07	3.04	3.06
Non-linear	6.08	2.99	3.07

LSTM with FNN architecture performs the best in the simulation

Loss correction comparison



- All methods improve performance while meeting communications constraints
- The performance of backward method worse than the noisy method
 - Slow converge due to increased variance
- The forward method converges nearly as fast as the oracle method



- Backward method fails miserably due to very badly conditioned confusion matrix
- The forward method converges approximately as fast as the oracle method

Conclusions

- We considered active resource allocation for ISAC systems operating in dynamic shared spectrum environments
- Previous Model-Based Online Learning (MBOL) methods are extended to accommodate partial observability
- A proposed LSTM architecture and forward correction method significantly boost performance and meet communication rate constraints under partial observability
- Simulations indicate that the forward loss correction achieves performance almost identical to the oracle method