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Introduction

▪ Integrated Sensing And Communications (ISAC) is a key 
new technology for 6G wireless systems and beyond

• Radar sensing and wireless communication are co-
designed for mutual benefit

• ISAC systems reduce the system cost and power 
consumption while also mitigating congestion in the 
radio spectrum

▪ We consider rapidly time-frequency-space varying 
shared spectrum scenarios

▪ RF systems dynamically use the spectrum

▪ Mobility of transmitters and receivers

▪ Online (machine) learning facilitates using the 
spectrum optimally in dynamic shared spectrum 
scenarios

▪ Actively learn to allocate resources in time-frequency-
space dimensions



Prior work and contributions

In our prior work:
We developed model-free and model-based
online learning algorithms that learn dynamic 
power allocation and sub-carrier selection 
policies from experience

We established bounds of the convergence rates 
for the model-based approach

In this presentation:
The model-based approach extended to learning 
from noisy spectrum observations (partially 
observable setting)

The performance of the proposed methods are 
empirically evaluated in dynamic shared 
spectrum scenarios



Non-cooperative system

Cooperative system

Integrated Sensing and Communications 
(ISAC) system

Adversarial system

Communications device Radar target

Unintentional 
interference

Do not share information

Considered shared spectrum scenario



Signal model

• “Time slotted” model used:
• Channel and interference assumed Wide Sense Stationary (WSS) over single observation period k

• Orthogonal multicarrier signal model with N sub-carriers (e.g., OFDM)
• Diagonal frequency-domain channel and interference plus noise covariance matrices

• Circulant approximation of Toeplitz structure in time-domain

• Signal model in frequency domain at receiver 𝑓 ∈ {𝑟, 𝑐}:

Channel

Coop. system

Non-coop. and adversarial systems

Noise

Receiver ”f=c” 

Receiver ”f=r” 

Sensing code
Comms. symbols

Noise + interference



Considered POMDP model

Agent

Environment

Policy

Dynamics model 
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for cooperation
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Optimization objective

Utility function:

Comms.: Communications MI (i.e., rate)

Sensing: Mutual information (MI) between 
received signal and target scattering matrix

Avg. sensing utility

Avg. comms. utility

Comms. rate requirement

SINR

Sub-carrier selection



Agent

Partially observable model-based learning (POMBL)

Controller

Model 
update

𝐳𝑘

𝒂𝑘−1

Memory
𝑔𝜃(𝑧𝑘 , 𝑎𝑘−1, 𝑥𝑘−1)

𝐱𝑘

𝒂𝑘

𝐱𝑘−1

• The POMBL memory is recursive:

• For example: windowing or recursive neural 
networks

• POMBL agent learns a transition model:

• Suppose pre-determined set of interference 
levels:

• The model for 𝑓 ∈ {𝑟, 𝑐} can be written as:

learned probability masses 



Model learning problem

• The model is learnt online by “sampling” from the real environment

• Indicate quantized states as:

• The POMBL minimizes cross-entropy minimization loss (i.e., the KL divergence):

• The unobservability problem is like one faced in “classification with noisy labels” problem in the 
context of machine learning

• Addressed with methods based on loss-correction1

• Find loss function that effectively optimizes 𝐿(𝛉)

Not observable to the agent → this 
objective cannot be directly minimized

1G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, “Making deep neural networks robust to label noise: A loss correction approach,” in 2017 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 2233–2241, 2017.



• Use detector (e.g., maximum likelihood) to estimate 𝐘𝑘:

• Detector 𝐷𝑖 𝑧𝑘,𝑖 ∈ 0,1 𝐿 outputs one-hot encoded vector indicated the detected state 

• We can compute the confusion matrix using model ℎ:

• Unbiased gradient estimator can be written as:

• where

• The condition number may be large for difficult observation models, inevitably increasing the 
gradient estimator variance

Backward loss correction method

1G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, “Making deep neural networks robust to label noise: A loss correction approach,” in 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 2233–2241, 2017.



• Consider a surrogate objective (effectively the same1):

• By definition, can be written as:

Forward loss correction method

Known probability density for the observations

1G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, “Making deep neural networks robust to label noise: A loss correction approach,” in 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 2233–2241, 2017.



The controller

• Expected utility given 𝐱𝑘
𝑓

:

• Objective:

• The controller problem is non-convex → the following procedure is used
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Numerical examples

• Simulate multiple dynamic interference sources within the 
considered bandwidth

• Each source modelled using two Markov chains
• One determines the probabilities for changing sub-

channels
• One determines the interference power between 

subsequent time slots
• We compare different memory and model architectures 

when the learning labels Y𝑘 are fully observable
• The loss correction methods are compared where all use the 

same (best) architecture



Architecture comparison

Name Memory Model

Linear No memory Generalized linear

Linear W. Windowed Generalized linear

Non-linear No memory Fully connected 
neural network 
(FNN) w. Softmax
output layer

Non-linear W. Windowed ––〃––

LSTM LSTM ––〃––
LSTM with FNN architecture performs the best in the 
simulation



Loss correction comparison

• All methods improve performance while meeting 
communications constraints

• The performance of backward method worse than the 
noisy method

• Slow converge due to increased variance

• The forward method converges nearly as fast as the 
oracle method

• Backward method fails miserably due to very badly 
conditioned confusion matrix

• The forward method converges approximately as fast 
as the oracle method



Conclusions

• We considered active resource allocation for ISAC systems operating in dynamic shared 
spectrum environments

• Previous Model-Based Online Learning (MBOL) methods are extended to accommodate 
partial observability

• A proposed LSTM architecture and forward correction method significantly boost 
performance and meet communication rate constraints under partial observability

• Simulations indicate that the forward loss correction achieves performance almost identical 
to the oracle method
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