AASP5-P5.5 Sound Field Interpolation for TOKYO NIVERSITY SIGNAL Processing Yukoh Wakabayashi, Kouei Yamaoka, and Nobutaka Ono

Abstract

Introduction

This study addresses sound field interpolation (SFI) for array signal processing (ASP)

- Robust to acoustic transfer system (ATS) variation due to the microphone array's rotation.
- Highly versatile to downstream ASP.

Technical points:

- Sound field periodicity on circumference
- Noninteger sample shift

Background

- ASP assumes a time-invariant ATS, but it is a time-variant one actually.
- ATS's variation forces the re-estimation of spatial information, e.g., covariance. \Rightarrow makes online processing difficult.
- Motivation

- We want to follow the ATS's variation caused by rotating circular microphone array (CMA).
- We want to apply SFI to existing ASP methods.

SFI method	Evaluation
Idea: Estimating the signal at the position where	SER: Signal-to-Error ratio
no microphone exists by SFI on circumference	Mixture: 2 srcs, fs=16kHz [m]: male voice [f]: female voice [m]: male voice [m
\Box Key: Observation by Δ -rotated CMA = δ -shifted z	RT60≈100ms, 12 envs,
$\Delta = 2\pi \delta/M$	STFT: 1/8 shifts,
$M \text{ # of mics} \qquad \qquad$	64 ms Hamming window
Formulation	BF: MPDR + RTF
Sample shift=phase rotation in Fourier domain	$\square SFR vc \# of micc$

■ Sample sint private rotation in Pourier domain

$$z_{m}(\delta) = \mathscr{F}_{D}^{-1} \left[\mathscr{F}_{D} \left[z_{m}\right] \underline{e^{j\Delta k}}\right] = \sum_{n=0}^{1} z_{n} U_{mn}(\delta), m = 0, \dots, M - 1$$

$$\bigcup_{mn}(\delta) = \begin{cases} \frac{1 - (-1)^{n-m} e^{-j\delta \pi}}{M} + \frac{\sin(ML)\cos(M+2)L\pi}{\sin(c(2L)}, (even M), \\ \frac{1}{M} + \frac{M-1}{M} \frac{\sin(c((M-1)L)\cos(M+1)L\pi}{\sin(c(2L)}, (odd M). \\ L = (n-m-\delta)/2M \end{cases}$$
■ Matrix representation
$$z(\delta) = U(\Delta)z, \quad U(\Delta) = \left(U_{mn}(\delta)\right). \quad z \in \mathbb{C}^{M}$$
* This method is similar to circular harmonics domain processing.
$$\frac{Applying SFI \text{ to } ASP}{k + j + j + j + j}$$
■ Raising the beamforming task as an example
= Let x_{tf} be the STFT-domain observations
$$x_{tf} = \left[x_{0tf} \cdots x_{(M-1)tf}\right]^{T}$$
■ Pre-estimating spatial filter w_{f} at the reference position (= no rotation)

- Estimating the reference observation
 - = SFI along the inverse rotation $\hat{x}_{ref,tf} = U(-\theta_t)x_{tf}$
- Filtering with pre-estimated filter $y_{tf} = w_f^{\mathsf{H}} \hat{x}_{\mathrm{ref},tf}$
- SFI enables the time-variant ATS to be regarded virtually as a time-invariant ATS.
- - Self-rotation localization with SFI [Lian+ APSIPA ASC 2020]

- SFI with unequally spaced CMA [Luan+ EUSIPCO 2022, 2023]
 BSS with SEI [Nakashima+ APSIPA Trans. on SIP] (Open Acces)
- BSS with SFI [Nakashima + APSIPA Trans. on SIP] (Open Access)

 SFI and BF achieved quick response online beamforming even when the CMA rotates.
 Future work includes improving the estimation accuracy of the higher frequency component and applying different ASP methods.