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Introduction
Why low dose CT?

Context Problem
e Reduced radiation exposure e Reduced image quality i.e lower
e Repeated screenings -> Early signal-to-noise ratio
detection -> Better patient e Limited diagnostic information
Outcomes e False positives and negatives ->
e (ost-Effective Unnecessary follow-up
e Shorter scan time -> Better procedure
patient comfort -> Patient e Applicability to specific
compliance conditions

e Patient safety e Risk-Benefit considerations
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SEM

e To reduce noise and
artifacts present in the
sinogram

e Impacts the quality of
the reconstructed CT
images

*

Method

Image
Rei;rnlggri?:(taion Enhancement
Module (SEM) Module (IEM)
LR, (SwinIR)
NAG-LS

NAG to solve the least
squares problem in CT
image reconstruction
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min  f(x) = %H/\;r -b
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Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course (Vol. 87). Springer Science & Business Media.

IEM

To preserve fine details
and improve overall
image quality

Fine tunes the image,
making it diagnostically
valuable
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Method

Conv - Convolutional Layer
RSTB - Residual Swin Transformer Block
STL - Swin Transformer Layer

|

Conv
RSTB |

~ RSTB
 RSTB
. RSTB |

. RSTB |

Conv

SwinlIR ]

e Shallow feature extraction module: uses a convolution layer

e Deep feature extraction module: RSTB blocks (uses several Swin Transformer layers for
local attention and cross-window interaction)

e (Convolution layer at the end of DFE and a residual connection
Image reconstruction module: uses a convolution layer
MSE loss criterion, Adam optimizer, StepLR scheduler used during training

*

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. (2021). Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 1833-1844).
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Method Low dose | Clinical dose
FDK 1 0.07959 0.03102
SIRT 0.06648 0.04545
(b) (c)
NAG-LS 0.04408 0.04070
NAG-LS+SEM 0.01520 0.00940
NAG-LS+SEM+IEM | 0.00918 0.00467
(d) (e) U}

e C(linical dose, FDK outperforms NAG-LS

e C(linical dose, when SEM is used NAG-LS
outperformed FDK again

e SEM reduced MSE but blurred image

e |EM accentuated sharp features

(@), (d): FDK (Baseline)

(b), (e): NAG-LS with SEM

(), (f): NAG-LS with SEM and IEM

(9): Clean CT image

Upper row: Low dose, Lower row: Clinical dose

* Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. Josa a, 1(6), 612-619.
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Conclusion

End to End Training (Soon)

To integrate and optimize all the components of the
reconstruction pipeline

Summary

Significantly reduced MSE, in
the case of low dose by
one-fifth and clinical dose by
one-tenth

Among the top 5 solutions



