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ABSTRACT

Unsupervised domain adaptation (UDA) aims to transfer a model
learned using labeled data from the source domain to unlabeled data
in the target domain. To address the large domain gap issue be-
tween the source and target domains, we propose a novel regular-
ization method for domain adaptive object detection, BlenDA, by
generating the pseudo samples of the intermediate domains and their
corresponding soft domain labels for adaptation training. The inter-
mediate samples are generated by dynamically blending the source
images with their corresponding translated images using an off-the-
shelf pre-trained text-to-image diffusion model which takes the text
label of the target domain as input and has demonstrated superior
image-to-image translation quality. Based on experimental results
from two adaptation benchmarks, our proposed approach can signif-
icantly enhance the performance of the state-of-the-art domain adap-
tive object detector, Adversarial Query Transformer (AQT). Particu-
larly, in the Cityscapes to Foggy Cityscapes adaptation, we achieve
an impressive 53.4% mAP on the Foggy Cityscapes dataset, surpass-
ing the previous state-of-the-art by 1.5%. It is worth noting that
our proposed method is also applicable to various paradigms of do-
main adaptive object detection. The code is available at https:
//github.com/aiiu-lab/BlenDA

Index Terms— object detection, domain adaptation, unsuper-
vised domain adaptation, blended images, target domain

1. INTRODUCTION

Unsupervised domain adaptation (UDA) has recently gained signif-
icant attention in the field of object detection, with its primary goal
being the reduction of cross-domain discrepancies. It enables detec-
tors trained on sufficient labeled source data to effectively generalize
to unlabeled data in the target domain.

To bridge the domain gap, recent advancements in unsupervised
domain adaptive object detection have prominently featured mean
teacher (MT)-based approaches [1]. Deng et al. [2] introduce un-
biased mean teacher (UMT), incorporating CycleGAN [3] to syn-
thesize images and mitigate domain discrepancies. Another inno-
vative approach is presented by Li et al. [4], who propose an adap-
tive teacher (AT) utilizing feature-level adversarial learning. This
method ensures that features extracted from both source and tar-
get domains display similar distributions. Instead of applying ad-
versarial learning, He et al. [5] utilize target-like images along with
the proposed target-perceived dual-branch distillation (TDD) frame-
work to enhance the student model by recognizing objects in the

The first two authors contribute equally to this work. This research is
supported by National Science and Technology Council, Taiwan (R.O.C),
under the grant number of NSTC-112-2634-F-002-006 and NSTC-112-2222-
E-001-001-MY2, and Academia Sinica under the grant number of AS-CDA-
110-MO09.

Prompt: “Add some fog” —— Translation

= -

Target image

Source image

Blended image

0%
SEe00 5D s

SR & OCG
%@&0% @ X

()C [GANY

@© @ Blended images @ Translated images

@ Target-domain images

(O Source-domain images

Fig. 1. Overview of BlenDA. We utilize a diffusion-based gener-
ative model [8] to generate a target-like translated image with an
appropriate prompt and mix it with the source image into a series of
blended images for the intermediate domains, which play the role of
a bridge between two domains and can be used to train a detector
progressively. The direction of the arrow (Blue one) represents an
increasing proportion of the translated image used to blend with the
source image.

target domain through iterative cross-attention. While these meth-
ods successfully narrow the domain discrepancy, the quality of the
pseudo-labels predicted by the teacher model remains insufficient
for domain adaptation.

To address this issue, Cao et al. [6] introduce Contrastive Mean
Teacher (CMT), utilizing pseudo-labels to extract object-level fea-
tures and refine them through contrastive learning. Deng et al. [7]
propose a harmonious teacher (HT) that assesses the quality of
pseudo-labels by computing the correlation between object confi-
dence and bounding box location.

Unlike traditional approaches, Mattolin et al. [9] propose a
method that incorporates a portion of the target domain image with
the highest region-level detection confidence into the source im-
age to facilitate domain adaptation. Inspired by data augmentation
techniques in image classification tasks [10], Vu et al. [11] train
the model by integrating the interpolated image and loss, com-
puted using two distinct labels corresponding to the images used for
interpolation.

The methods mentioned above are primarily based on convo-
lution neural network (CNN). Different from CNN-based detection
architectures, transformer-based detectors greatly simplifies the
two-stage detection pipeline while achieving superior detection per-
formance. Carion et al. [16] propose DETR, which concentrates
on token-wise dependencies and eliminates hand-crafted compo-
nents such as anchor generation and non-maximum suppression,
replaced by the Hungarian algorithm. To address slow convergence
in DETR, Zhu et al. [17] introduce Deformable DETR, which re-
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Fig. 2. Comprehensive overview of BlenDA on AQT [
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]. We first generate translated images by InstructPix2Pix [8] and compute the §

using Eq (3). Subsequently, we feed the images Ipjendeq and I ¢, which are mixed according to Eq (1), into the model. Ipjended replaces
the original source image during the fine-tuning process, using the supervised loss L., to reduce the domain gap. Moreover, we adjust the
original adversarial loss specified in Eq (5) to Eq (6). This new adversarial loss enables the discriminators to distinguish different domains in

greater detail. Note that the model weights are initialized using the pre-trained weights released by Huang et al. [
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Fig. 3. Cityscapes [13] images are fed into InstructPix2Pix [&]
with the prompts to create translated images for both Foggy
Cityscapes [14] and BDD100K daytime [15]. Foreground objects
are notably absent, as indicated by the red boxes in the translated
images. After mixing the source and translated images, foreground
objects become visible as outlined by blue boxes in the blended im-
ages. ¢ represents the proportion used to blend the translated image
with the source one.

places the vanilla attention mechanism in DETR with deformable
attention. Recent studies have started to investigate how to leverage
transformer-based detectors in domain adaptive object detection,
such as Sequence Feature Alignment (SFA) [18]. Based on De-
formable DETR, Huang et al. [12] propose an Adversarial Query
Transformer (AQT) for domain adaptive object detection, which
performs adversarial feature alignment on transformers, with adver-
sarial tokens attending to the feature tokens.

To improve the domain alignment between the source and tar-
get domains, we introduce a novel regularization strategy called
BlenDA. The overview is shown in Fig. 1. During adaptation train-
ing, we synthesize high-quality pseudo samples of the intermediate
domains by blending source images with their corresponding target-
like translated images. These translated images are generated by the
off-the-shelf diffusion-based generative model InstructPix2Pix [&],
which utilizes the text label of the target domain as an instruction
for image-to-image translation. Subsequently, the blended images
act as a bridge between the source and target domains, serving as la-
beled data with the soft domain labels and ground-truth annotations

] before fine-tuning.

for fine-tuning a pre-trained model, which has been trained on data
from both the original source and target domains. To further im-
prove the adaptation performance, instead of a fixed mixing weight,
we propose dynamically adjusting the mixing weight as the train-
ing iteration progresses. Meanwhile, we employ the corresponding
soft domain labels to compute adversarial losses, which enhance
the capability of discriminators to distinguish between different
domains in greater detail. With extensive experiments, the results
demonstrate that our approach significantly enhances the model’s
performance over the previous state-of-the-art method.

2. THE PROPOSED METHOD

To leverage the superior strength of a pre-trained foundation model
for zero-shot text-to-image manipulation, we employ Instruct-
Pix2Pix [§] to produce translated data, establishing a bridge be-
tween the source and target domains. In Section 2.1, we commence
by pointing out the benefit of blending translated and source im-
ages and identifying the problem that may arise when directly using
translated images as source data. In Section 2.2, we delve into the
details of the mixed-domain adversarial loss, enhancing the discrim-
inator’s capacity to discern different domains with greater precision.
In Section 2.3, we show the overall training objective.

2.1. Sample Generation for Intermediate Domains

Directly using the translated images as source data for training can
lead to transferring inaccurate domain information due to the large
domain gap. As indicated by the red boxes in the translated images
in Fig. 3, it is evident that numerous foreground objects are either
obscured by fog or engulfed in darkness after translation. Therefore,
we first blend the paired source and translated data using a fixed
mixing weight §, as demonstrated in the following equation:

Iblende(i =4 Itranslated + (1 - 6) : ISO’U/I‘CE7 (1)

where § is a scalar value, while Iyiended, Liransiated, and Isource
correspond to the blended image, translated image, and source im-
age, respectively. We use § = 0.7 as an example to demonstrate
that combining source and translated images can make foreground
objects visible, as indicated by the blue boxes in the blended im-
ages shown in Fig. 3. Subsequently, we utilize the blended image



Tyiended as source data to fine-tune the model, which has been pre-
trained on the original source and target data. Intuitively, the pres-
ence of the blended image is expected to guide the model towards
better alignment with the target domain over time. Nevertheless,
as the supervised loss is computed from the blended images and &
stays constant in the whole training stage, the model may overfit the
blended images and cannot generalize well to the target domain. To
address this limitation, we propose a method that enables the adap-
tive adjustment of J, allowing the model to gradually transfer the
acquired domain knowledge to the target domain. Inspired by pro-
gressive pseudo-labeling [9], which dynamically adjusts the confi-
dence threshold during non-maximum suppression, we instead use
it as a method to blend the source and translated images, in which &
increases based on the current number of the training iterations:

current iteration
= 2)

total iterations ’

2
(T ) o

where v denotes the training progress, taking on values ranging from
0to 1. « serves as an adjustment factor; a higher value for o accel-
erates the removal of source data information. /3 is the upper bound
of the mixing weight, ensuring the foreground objects remain visible
and are not obscured. See Fig. 2, we generate the translated image
and combine it with the paired source image using the dynamic mix-
ing weight J, as defined in Eq (3), and obtain the blended image by
Eq (1). We also blend the target and source images without consid-
ering their structural relationship. The way to blend the target and
source images is the same as Eq (1). As illustrated below:

Is,t =0- ItaTget + (]- - 6) . Isou’r‘ce~ (4)

Subsequently, we use Ipiendeq and Is ¢ as input data to fine-tune the
model. Using Ipiended to fine-tune the model with L., which is
the original detection loss in AQT [12]. Using Iyiendeqd and Is ¢ to
fine-tune the model with mixed-domain adversarial loss, which will
be introduced in Section 2.2.

2.2. Mixed-domain Adversarial Loss

In this section, we explain how to incorporate the dynamic mixing
weight ¢ into the adversarial losses of AQT [12], one of the state-
of-the-art domain adaptive object detectors. To perform adversarial
learning, gradient reverse layers (GRL) [19] are used to reverse the
gradients that pass through the adversarial query tokens during gra-
dient backpropagation. The adversarial losses L%, | ch L and LT
in AQT are shown as below:

Lugy = d-log Dy(q) + (1 — d) -log(1 — Di(q)),  (5)

where [ € {sp, ch,ins} indicates different levels of feature align-
ment, with sp, ch, and ins signifying space-level, channel-level, and
instance-level alignment, respectively. ¢; is the corresponding ad-
versarial query token, and D; is the discriminator. Note that d is
a domain label, taking value O for the source domain and 1 for the
target domain. To enable the discriminator to distinguish domains
in greater detail, instead of the hard domain label, we can use a soft
label d and let d = 9, as follows:

Liao = d-log Dy(q) + (1 — d) - log(1 — Dy(q)).  (6)

Note that d = § signifies the mixing weight, indicating the pro-
portion of non-source domain information in the mixing data. For
example, it represents the proportion of I¢qrget used to blend with
the source image for I ;.

2.3. Overall Training Objective
The total loss is defined as:
Liotar = Lsup + )\spilzzv + AchLZZv + Ains ~Z;&"SU7 (7)

where Asp, Ach, and Ains are the trade-off parameters. The opti-
mization objective for detection transformer F' is

F* = argmin _max Liotal. (8)
F Dsp,Dchs
Dins

3. EXPERIMENTS

3.1. Datasets and Experimental Settings

Our experimentation encompasses three standard datasets, including
Cityscapes [13], Foggy Cityscapes [14] and BDD100K [24]. We
evaluate two adaptation settings: (1) Source : Cityscapes — Tar-
get : Foggy Cityscapes and (2) Source : Cityscapes — Target :
BDD100K daytime. The details of the datasets are described below.
Cityscapes: A real urban scenes data containing 2,975 images for
training and 500 images for validation, including 8 classes (person,
rider, car, train, bicycle, motorbike, truck, and bus).

Foggy Cityscapes: A synthetic dataset generated from Cityscapes.
We take the highest fog density images as the validation set to test
the performance of our model.

BDD100K daytime: BDD100K is a large-scale driving dataset and
the daytime subset is selected as the target domain. The training
and validation sets have 70,000 and 10,000 images, respectively.
We consider the common 7 categories (person, rider, car, bicycle,
motorbike, truck, and bus) following [15].

3.2. Implementation Details

In our experiments, we retain the original architecture of AQT [12],
while making modifications to the input data and adversarial losses.
To create the translated data, in Cityscapes to Foggy Cityscapes,
we use InstructPix2Pix [8] with the prompt “Add some fog” and set
the text classifier free guidance (cfg) scale = 7.5, image cfg scale =
1.5 and seed = 58,912. In Cityscapes to BDD100K daytime, we
use the prompt “Driving scene at dark night” and set text cfg scale
= 9.0, image cfg scale = 1.5 and seed = 981. This translation is
applied to all training images in Cityscapes, resulting in a total of
2,975 translated images. For the hyper-parameters, in Cityscapes to
Foggy Cityscapes, we set « = 20, 5 = 1.0 to control the mixing
rate and the mixing upper bound, and \sp, Ach, and A, are set
to 10!, In Cityscapes to BDD100K daytime, we set o = 20,
B =05, Asp = 0.1, Aen. = 107>, and \ins = 107*. We use
AdamW [25] as the optimizer with the weight decay rate of 10~*
and the constant learning rate of 2 x 10™° for the entire training
process. All experiments are trained for 150 epochs with a batch
size of 3 (a source image, a translated image, and a target image),
using two NVIDIA RTX A6000 GPUs.

3.3. Experiment Results Comparison

In this section, we present a performance comparison of AQT us-
ing BlenDA alongside other methods on the Cityscapes to Foggy
Cityscapes dataset, as shown in Table 1. Additionally, we provide
a performance analysis of AQT, both with and without the use of
BlenDA in Table 1 and Table 2.

Cityscapes to Foggy Cityscapes: In Table 1, we compare AQT
with BlenDA against existing methods built upon Faster RCNN [26],
FCOS [27], or Deformable DETR [17]. “Source Only” refers to the
baselines that are only trained on source data. “V16” and “R50” in-
dicate the backbone architecture used, which are VGG-16 [28] and



Table 1. We present the outcomes and comparative analysis of cross-domain object detection on the validation set of Foggy Cityscapes for
the adaptation from Cityscapes to Foggy Cityscapes. The average precision (AP, %) for all classes is reported.

Method Detector Backbone prsn rider car truck bus train motor bike mAP
Source Only Faster RCNN R50 269 382 356 183 324 96 25.8 28.6 26.9
TDD [5] Faster RCNN R50 50.7 537 682 351 530 45.1 389  49.1 49.2
CMT [6] Faster RCNN V16 470 557 645 394 632 519 40.3 53.1 51.9
AT [4] Faster RCNN V16 455 551 642 350 563 543 38.5 51.9 50.1
PT [20] Faster RCNN V16 40.2 488 59.7 307 518 30.6 354 445 42.7
Source Only FCOS R50 36.9 363 441 18.6 293 8.4 20.3 31.9 28.2
SIGMA [21] FCOS R50 440 439 603 316 504 515 31.7 40.6 442
SCAN [22] FCOS V16 417 439 573 287 48.6 487 31.0 373 42.1
HT [7] FCOS V16 521 558 675 327 559 491 40.1 50.3 50.4
OADM [23] FCOS V16 478 465 629 321 485 509 343 39.8 454
Source Only Deformable DETR R50 377 39.1 442 172 268 5.8 21.6 35.5 28.5
SFA [18] Deforamble DETR R50 47.1 464 622 300 503 355 279 412 42.6

Deformable DETR R50 493 523 644 277 537 465 36.0 464 47.1
Deformable DETR R50 550 575 736 375 61.6 48.0 43.2 509 53.4(+6.3)

AQT [12]
AQT(BlenDA)

Table 2. We present a performance comparison of AQT, both with and without the integration of BlenDA, on the BDD100K validation set,
focusing on the adaptation from Cityscapes to BDD100K daytime.

prsn  rider car truck bus motor bike mAP
Cityscapes to BDD100K AQT 382 330 584 173 184 169 235 29.4
AQT(BlenDA) 44.5 363 641 20.0 18.1 24.6 269 33.5(+4.1)

lation helps simulate the domain shifts in the image space, some
discriminative details may be lost. Therefore, it is essential to ac-
count for mixing between Isoyrce and Itransiated during fine-tuning
to achieve better alignment. To further analyze the importance of

Table 3. Ablation studies of (static/dynamic) § and the experiments
of different loss settings on Cityscapes to Foggy Cityscapes.

Different ¢ Settings dynamic mixing weight §, we use the blended images as source data
. . to fine-tune the model. We set ¢ to 0.7 and 0.9 as a static mixing
tat! d
statie yhamie weight to generate Ipiendeq. Although these blended images with
=07 6=09 d=1.0]0inEq(3) a static mixing weight improve the model’s performance, utilizing
mAP 49.1 48.0 32.7 52.8 dynamic § can further improve the model as it can progressively

control the mixing of source and domain knowledge. See Table 3,

W/ or w/o Mixed-domain Adversarial Loss using dynamic mixing weight can achieve performance improve-

Intendeda  Tiarget It mAP ment by 3.7% compared to the setting of & as 0.7, which gives the
Lodo v v 52.8 highest performance for static blending.
7 v v W/ or w/o Mixed-domain Adversarial Loss: To demonstrate that
Lgay 53.4

applying the mixed-domain adversarial loss can further enhance
the model’s performance, we compare the results in two different
settings: one uses Ipiended and Iiarge: With the hard domain la-
bels 0 and 1, respectively, and the adversarial loss Lqq4.; the other

ResNet-50 [29], respectively. After training with BlenDA, AQT im-
proves by 6.3% in mAP, outperforming all other methods and sur-

passing the previous state-of-the-art by 1.5%. Notably, CMT [6]
enhances rare class samples by utilizing target images and their cor-
responding pseudo labels, whereas BlenDA does not employ such
labels. This accounts for the superior performance of rare classes,
such as truck, bus, train, and bike, in CMT.

Cityscapes to BDD100K daytime: Our method demonstrates a ex-
ceptional performance compared to the original AQT, achieving a
mAP higher by 4.1%. Notably, by employing our method, we ob-
serve enhancements across nearly all categories, leading to an over-
all performance surpassing the original AQT baseline. Bold text is
employed to signify superior performance.

3.4. Ablation Studies

In this section, we analyze the proposed fine-tuning strategy in
BlenDA by experiments on Cityscapes to Foggy Cityscapes.

Different § Settings: As indicated in Table 3, it is observed that
when we set § as a hard mixing weight, which disregards the mix-
ing between the source and translated images, the model performs
poorly (shown in red). This reflects that even though image trans-

utilizes Ipiendeqd and I with a soft label to compute the mixed-
domain adversarial loss Eadv. ‘As shown in Table 3, using the
mixed-domain adversarial loss Lqq4, for fine-tuning outperforms
that without mixed-domain labels by 0.6% in terms of mAP.

4. CONCLUSION

In this paper, we introduce BlenDA, a regularization strategy for
the training of domain adaptive object detectors that incorporate the
mixing of the source and the translated images and their correspond-
ing soft domain labels. In general, the proposed approach is also
applicable to various domain adaptive object detection paradigms.
The proposed BlenDA can effectively reduce domain shifts between
the source and target domain by generating blended images for the
intermediate domains. We exemplify the application of our train-
ing strategy on AQT and evaluate it on two standard benchmarks.
The superior results confirm the effectiveness of our methods. The
ablation studies further demonstrate that dynamically mixing both
images and domain labels significantly improves the model’s perfor-
mance, leading to substantial progress.
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