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Introduction

Continuous Integrate-and-Fire [1]
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Encoder outputs 𝐇 = (𝐡0, … , 𝐡𝑡 , … , 𝐡𝑇−1) Compressed AWEs    𝐂 = (𝐜0, … , 𝐜𝑚, … , 𝒄𝑀−1)        

Training 
Objective

Cascade
Ragged Attention 

(R.Attn)
ConvFc MeanAbs ℒ = ℒ𝑟𝑛𝑛𝑡 + ℒ𝑞𝑢𝑎

Modifications Advantages

Detach CE 

loss from CIF

Insert CIF 

into RNN-T
Less decoding steps

Detach 𝑀 from 𝐘

No limit to 

representable words

• Optimized with Cross Entropy (CE) 
loss against target output tokens 𝐘∗.

    ➥  𝑀∗  =
!

Y∗

Experiment Setup

Datasets

LibriSpeech

• Training data: ‘clean-100’ and 

‘clean-360’

• Output token set: 500 BPE 

tokens

• 𝑀∗: Number of words

CSJ

• Training data: All

• Output token set: 3266 

characters

• 𝑀∗: Number of morphemes

• Transcript: Fluent

Setup

Framework: 

Encoder:

Decoder:

Pad:

Next Generational Kaldi (NGK)

pruned transducer stateless7 streaming [2]

(removed final downsampling layer)

stateless decoder [3] (extended context size 

to 4)

30 frames at the end of utterances

Training Decoding

Epochs 40

RNNT loss Pruned RNNT loss [4]

Prune range (LibriSpeech) 16

(CSJ) 8

Augmentation Spec- and noise augmentation

Beam size 4

Chunk size 640ms

Search method ‘batched beam search’

Max token per 

AWE

(LibriSpeech) 9

(CSJ) 5

CIF

Error Rates & RTF

Note: 

1. Among combinations of averaged checkpoints from previous epochs up to epoch 40, models with the best 

(W/C)ERs on the validation set were selected to evaluate the test sets.

2. “CIF-less” refers to the model trained with the original “pruned transducer stateless7 streaming” recipe.

∅-WER

Ref
_THERE ∅ _IS ∅ _NO ∅ _OPENING ∅ 

_FOR ∅ _YOU ∅

Hyp
_THERE _IS ∅ ∅ _NO ∅ _OPEN ∅ ING ∅ 

_FOR _YOU ∅ 

Strict 

∅-WER

(100%)

( _THERE ∅ → _THERE _IS ∅) ( _IS ∅ → 

∅) _NO ∅ ( _OPENING ∅ → _OPEN ∅) 

(* → ING ∅) ( _FOR ∅ → _FOR _YOU ∅) 

( _YOU ∅ → *)

Relaxed 

∅-WER

(66%)

_THERE ∅ _IS ∅ _NO ∅ ( _OPENING ∅ → 

_OPEN ∅) (* → ING ∅) ( _FOR ∅ → _FOR 

_YOU ∅) ( _YOU ∅ → *) 

Definition

• Measures capability to locate word boundaries

• Splits output of greedy path per ∅ for evaluation

(Relaxed)

• To isolate identified but wrongly located ∅s

• Splits word with “_” if lone ∅ is encountered

Design LibriSpeech CSJ (fluent)

𝜔 𝜑 clean other RTF eval1 eval2 eval3 RTF

CIF-less 4.27 13.06 0.0119 3.99 3.39 3.61 0.0064

ConvFc Cascade 5.28 14.74 0.0045 4.98 4.22 4.30 0.0026

MeanAbs Cascade 5.03 14.33 0.0042 4.96 4.25 4.35 0.0025

ConvFc R.Attn 4.62 13.38 0.0042 4.45 3.75 4.29 0.0032

MeanAbs R.Attn 4.41 13.09 0.0046 4.50 3.74 4.02 0.0028

Design clean other

𝜔 𝜑 Strict Relax Strict Relax

ConvFc Cascade 24.13 12.55 37.33 24.21

MeanAbs Cascade 23.26 13.02 35.56 23.32

ConvFc R.Attn 21.99 8.22 32.22 17.99

MeanAbs R.Attn 30.20 7.92 38.55 17.19

Results

• Only Librispeech

     ➥ Because Japanese lacks whitespace

Conclusion

✓   Streamingly compressed acoustic information into meaningful word units (AWEs)

✓   Sped up decoding by reducing decoding operations. 

✓   Minimized accuracy degradation with novel CIF mechanisms.

Incorporated CIF into RNN-Ts 

Conventional CIF

Bridge 

between 

speech and 

text 

Speech and 

text must 

share same 

vocabulary!

But!!

Idea

•   CIF

• RNN-T

Compress encoder outputs into  

acoustic word embeddings (AWEs)

Spell the word from the AWE using 

a limited output token set
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