# Towards a World-English Language Model for On-Device Virtual Assistants

Rricha Jalota<sup>2\*</sup>, Lyan Verwimp<sup>1</sup>, Markus Nussbaum-Thom<sup>1</sup>, Amr Mousa<sup>1</sup>, Arturo Argueta<sup>1</sup>, Youssef Oualil<sup>1</sup> Apple<sup>1</sup>, AppTek GmbH<sup>2</sup>

### Abstract

### Background

- **Neural Network Language Models** (NNLMs) for Virtual Assistants are generally language-, region- or device-dependent. Combining NNLMs for one or more categories is one way to **improve scalability**.
- This study focusses on developing a **World-English NNLM** that meets the accuracy, latency and memory constraints of single-dialect models.
  - Given three high-resourced dialects: American (US), British (UK), and Indian (IN) English

#### **FOFE-based FeedForward NNs**

Fixed-size Ordinally-Forgetting Encoding (FOFE) method [1] uniquely encodes variable-length sequences into fixed-size representations, serving as an alternative to RNNs for sequence modeling tasks.

#### Adapters

Parameter-efficient modules for adapting pre-trained models to new tasks [2]



Results indicate that **adapter modules** are more effective in modeling dialects than specialised sub-networks.

[1]Zhang, Shiliang et al. "The Fixed-Size Ordinally-Forgetting Encoding Method for Neural Network Language Models." Annual Meeting of the Association for Computational Linguistics (2015). [2] Adapters: Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International Conference on Machine Learning. PMLR, 2019.

## **Model Architecture and Experimental Setup**

#### **Base Models: FOFE-based NNLMs**



### **World-English NNLMs**

**Baseline:** Train Mixture FOFE and AD FOFE with multi-dialect data.

#### **Extension with Adapters**

- Placement
- 2. Training Strategy
  - RI-A: Add a randomly-initialised adapter to pre-trained multi-dialect model



#### Multi-dialect AD



Mixture

(Higher Accuracy)

Application Dependent (AD) (Lower Latency)

#### **Experimental Setup**

**Data:** Anonymised randomly sampled user requests from multiple domains and applications. Equal amounts of data sampled for each dialect for training.

#### **Evaluation**:



| Dialect | Ast. | STT  | T.E. |  |  |
|---------|------|------|------|--|--|
| US      | 226K | 292K | 454K |  |  |
| GB      | 155K | 114K | 232K |  |  |
| IN      | 153K | 54K  | 239K |  |  |
|         |      |      |      |  |  |

Number of words in test sets

- ii. PT-A: Train together with the base model with multi-dialect data (Mix+A)
- iii. FT-A: Fine-tune PT-A
- 3. Dual-Adapter (DA) Variant

#### **Proposed Architecture**

#### Motivation:

Improve the accuracy of AD FOFE while maintaining its lower latency.



### Conclusions



| Mor<br>First-pass<br>Decoding<br>Results → Mix<br>(WERs)<br>AD- | Model           | d Model   | en_US       |             | en_GB |               |             | en_IN        |             |             |             |
|-----------------------------------------------------------------|-----------------|-----------|-------------|-------------|-------|---------------|-------------|--------------|-------------|-------------|-------------|
|                                                                 | widdei          | Size      | Ast.        | STT         | T.E.  | Ast.          | STT         | T.E.         | Ast.        | STT         | T.E.        |
|                                                                 | Mono            | 111M      | 3.97        | 3.47        | 18.24 | 5.26          | 6.16        | 16.3         | 6.92        | 9.62        | 26.14       |
|                                                                 | Mix             | 89M       | 3.97        | <u>3.41</u> | 16.84 | 5.33          | <u>6.17</u> | 16.29        | 6.69        | 9.46        | 24.0        |
|                                                                 | Mix+A           | 89M       | <u>3.95</u> | <u>3.41</u> | 16.83 | <u>5.33</u>   | 6.18        | 16.27        | 6.69        | 9.18        | <u>23.9</u> |
|                                                                 | AD              | 54M       | 4.01        | 3.43        | 17.52 | 5.34          | 6.28        | 16.69        | 7.16        | 9.57        | 24.6        |
|                                                                 | AD+A            | 55M       | 3.99        | 3.41        | 21.94 | 5.38          | 6.33        | 21.88        | 7.24        | 9.64        | 21.8        |
|                                                                 | AD+DA           | 45M       | 3.97        | 3.42        | 17.32 | 5.36          | <u>6.21</u> | 16.53        | <u>6.90</u> | 9.54        | 24.34       |
| → ·                                                             | AD+CAA+DA       | 49M       | 3.93        | 3.39        | 17.32 | 5.35          | 6.25        | <u>16.44</u> | <u>6.90</u> | <u>9.42</u> | 24.32       |
|                                                                 |                 |           |             |             |       |               |             |              |             |             |             |
|                                                                 |                 | Model     | As          | t. Avg.     | Ast   | t. <b>P95</b> | ST          | T Avg.       | ST          | T P95       |             |
| Latency Results<br>(in milliseconds)                            | ilts Mo         | no_150k   |             | 334         | Z     | 425           |             | 50           |             | 185         |             |
|                                                                 | ds) 🔶 🛛 I       | Mix+A     |             | 421<br>359  |       | 785<br>474    |             | 74<br>54     |             | 230<br>182  |             |
|                                                                 | ÁD <sup>.</sup> | AD+CAA+DA |             |             |       |               |             |              |             |             |             |
|                                                                 |                 |           |             |             |       |               |             |              |             |             |             |

- We build a World-English NNLM for an on-device ASR system for three high-resourced English dialects.
- After examining the application of adapters in FOFE-based models, we introduce an architecture that bridges the accuracy and latency gap between the baseline multi-dialect models.
- The proposed model relatively improves the accuracy of singledialect baselines by an average of 1.63% on head-heavy test sets and **3.72% on tail entities across dialects**. Moreover, it matches the latency and memory constraints of on-device VAs.

\*Work done while the author was an intern at Apple.

© 2024 Apple Inc. All rights reserved.