
Maximum Likelihood-based Gridless DoA Estimation
using Structured Covariance Matrix Recovery

and SBL with Grid Refinement

Rohan R. Pote and Bhaskar D. Rao

Material Appeared in: Transactions of Signal Processing, 2023

Department of Electrical and Computer Engineering
University of California San Diego

2024 International Conference on Acoustics, Speech and Signal Processing

Apr. 14 - 19, 2024



Overview SBL Reform StructCovMLE Simulations Final Remarks References

Contributions

Established sparse Bayesian learning (SBL) as correlation-aware technique
Effectively utilizes array geometry and correlation prior information to
identify more sources than sensors

Reformulated SBL as a novel structured matrix recovery problem to
perform gridless estimation of DoAs, under MLE framework

Proposed approach minimizes KL divergence between (true) data
distribution and the assumed (uncorrelated sources) distribution

Insights to connect proposed approach with SBL and traditional MLE

Provided algorithms for both ULA and non-uniform linear arrays in general

Numerically demonstrated proposed approach very robust
Scenarios: single snapshot, correlated sources, small sources separation,
more sources than sensors
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Problem of Interest

source 1
source 2

source K

0 1 M − 1

Figure: K narrowband sources impinging on M sensors antenna array

Measurement Model (L snapshots):

yl =
K∑

k=1

ϕ(θk)xl,k + nl = Φθxl + nl , 0 ≤ l < L (1)

ϕ(.) ∈ CM is a array manifold/response vector, θ = [θ1, . . . , θK ]
T ,

xl ∈ CK and noise nl ∈ CM independent of each other, i.i.d. over time,
nl is distributed as CN (0, σ2

nI).

Aim: To estimate direction of arrivals (DoA), θk ’s, for narrowband sources
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Traditional & Modern Approaches

On Traditional Approaches:

Parametric methods like maximum likelihood estimation (MLE) allow
introducing meaningful parameters

Such parameters may be inferred with a single snapshot!

Resulting cost function may be highly non-linear; model order is unknown

On Modern Approaches:

Introduce novel reparameterization and either explicit or implicit sparsity
Examples include grid-based and grid-less sparse signal recovery algorithms
(e.g., matching pursuit, SBL, ANM,SPICE etc.)

SBL (a grid-based algorithm) formulates the problem under MLE
framework, implicit regularization!

To find best of both worlds -
Enhance SBL formulation to perform gridless DoA estimation under MLE!
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DoA Estimation under Maximum Likelihood Estimation Framework

We impose a parametrized Gaussian prior on xl i.e., xl ∼ CN (0,P).

Explicit knowledge of model order information is needed

Optimization problem for maximum likelihood DoA estimation

min
θ∈[−π

2
,π
2
)K ,

P≻ 0,λ≥0

log det
(
ΦθPΦ

H
θ + λI

)
+ tr

(
(ΦθPΦ

H
θ + λI)−1R̂y

)
, (2)

where λ denotes noise variance estimate, and
R̂y =

1
L

∑
l yly

H
l denotes the sample covariance matrix.
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Sparse Bayesian Learning
Remodeling+Implicit sparsity

Grid-based remodeling: discretize the possible values of θ and introduce the
measurement matrix Φ ∈ CM×G , G denotes the grid size

[y0, . . . ,yL−1] Φ ∈ C
M×G [x̄0, . . . , x̄L−1] [n̄0, . . . , n̄L−1]

M ≪ G

.

Figure: Multiple measurement vector (MMV) model

Original problem in (1) can be re-written as

yl = Φx̄l + n̄l , 0 ≤ l < L, (3)

where the i-th column [Φ]i = ϕ(θi ), for some known ϕ(.), i = 1, . . . ,G .

X̄ = [x̄0, . . . , x̄L−1] is row-sparse i.e., most of the rows are zero.
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Sparse Bayesian Learning (2)
Remodeling+Implicit sparsity

Prior on x̄l :

SBL imposes a parameterized, uncorrelated sources Gaussian prior

x̄l ∼ CN (0,Γ) where Γ is a diagonal matrix; let diag(Γ) = γ

yl ∼ CN (0,ΦΓΦH + λI), λ denotes the estimate for noise variance

uninformative priors → (γ, λ) estimated under MLE framework

MLE optimization problem:

min
Γ⪰0,λ≥0

log det
(
ΦΓΦH + λI

)
+ tr

((
ΦΓΦH + λI

)−1

R̂y

)
, (4)

where R̂y =
1
L

∑L
l=1 yly

H
l denotes the sample covariance matrix (SCM)

Many algorithms to solve (4) (e.g., Tipping iterations(Tipping 2001), EM
iterations(Wipf and Rao 2004), sequential SBL(Tipping and Faul 2003))
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Example: Uniform Linear Array (ULA)

distance: d =
λ̄

2

0 1 2 3 4 5 6 7

Figure: ULA with M (=8, here) sensors. λ̄: wavelength of incoming signals

ΦΓΦH is a Toeplitz matrix; consequence of ULA geometry and
uncorrelated sources prior

SBL finds the ‘best’ positive semidefinite (grid-based) Toeplitz matrix
approximation to the SCM R̂y

Idea:

Reparameterize the SBL cost function to directly estimate the entries of the
Toeplitz covariance matrix
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Proposed (ML) Structured Covariance Matrix Recovery

Let v denote the first row of a Toeplitz matrix, Toep(v).

SBL optimization problem reparameterization:

min
v∈CM s.t.

Toep(v)⪰0,λ≥0

log det (Toep(v) + λI) + tr
(
(Toep(v) + λI)−1R̂y

)
. (5)

DoAs can be estimated by decomposing the solution Toep(v∗);
root-MUSIC used in simulations

Low-rank solution is encouraged by the log det term1, while its effect is
moderated by the noise variance term, ‘+λI’

Problem is non-convex in (v, λ); solved using majorization-minimization

1M. Fazel, H. Hindi, and S. P. Boyd (2003). “Log-det heuristic for matrix rank minimization
with applications to Hankel and Euclidean distance matrices”. In: Proceedings of the 2003
American Control Conference, 2003. Vol. 3, 2156–2162 vol.3.
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ULA with missing sensors case

For ULA with missing sensors, T(v) = SToep(v)ST (S: sampling matrix)

General formulation:

min
v∈CMapt s.t.

Toep(v)⪰0,λ≥0

log det (T(v) + λI) + tr
(
(T(v) + λI)−1R̂y

)
. (6)

Resulting SDP:

min
v∈CMapt , U∈CM×M

tr
(
(T(v(k)) + λI)−1T(v)

)
+ tr

(
U R̂y

)
(7)

subject to

[
U IM
IM T(v) + λI

]
⪰ 0,Toep(v) ⪰ 0,

(7) is solved iteratively with identity matrix initialization.

Note: Toep(v) ⪰ 0 imposed instead of just T(v) ⪰ 0 → pertinent model

DoAs can be estimated by decomposing the solution:

T(v∗) when fewer sources than sensors

Toep(v∗) otherwise
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Comparison with SBL

a)
T s.t. T =

Φ diag(γ)ΦH

b) T(v) =
SToep(v)ST

T � 0

γ s.t.
γ ≥ 0

v s.t.
Toep(v) � 0

R
G → C

M×M

(G ≫ M)

C
Mapt → C

M×M

(Mapt : aperture)

Figure: a) Positive semidefinite (PSD) cone used by SBL to fit to measurements b) Proposed
PSD cone that includes SBL’s search region

Consider the following updated SBL optimization problem:

min
Φ

min
Γ⪰0,λ≥0

log det
(
ΦΓΦH + λI

)
+ tr

((
ΦΓΦH + λI

)−1

R̂y

)
. (8)

Theorem

The proposed problem in (6) and in (8) are equivalent, in that they achieve the
same globally minimum cost.

Similar connection exists between classical MLE formulation in (2) and (8)
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More General Non-Uniform Linear Array

SBL

Grid point

adjustment

around peaks

Pruning

+

New grid pts.

γ
∗, K peak

points i
(r)
k ,

γest, K peak

points j
(r)
k ,

r : r + 1, new grid size G(r)

k = {1, . . . , K} k = {1, . . . , K}

Fig. Proposed SBL with likelihood-based grid refinement procedure.

At r = 0, SBL is run with a uniform grid.

Consider sensors placed arbitrarily on a linear aperture

Structured received signal covariance matrix is neither Toeplitz nor
sampled from Toeplitz

Proposed idea extends SBL by improving upon the initial grid in two steps
(see figure)
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Simulations

MATLAB code available

Performance compared with: ANM (Tang et al. 2013),

Reweighted ANM (RAM) (Yang and Xie 2016), gridless
SPARse ROW-norm reconstruction (SPARROW)
(Steffens, Pesavento, and Pfetsch 2018), and gridless
SPICE(Yang and Xie 2015)

Proposed ‘StructCovMLE’ algorithm and RAM are
iterative; run 20 iterations

Provide noise variance, σ2
n, to all algorithms,

except gridless SPICE; set λ = σ2
n in

‘StructCovMLE’

Scenarios considered:
resolution (+ regularization-free ‘StructCovMLE’
vs. RAM)
number of snapshots
source identifiability
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Single Snapshot Scenario
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(a) FB averaged SCM (b) StructCovMLE (Proposed)
Parameters: ULA with M = 10 sensors, K = 2 sources, SNR = 20 dB, 10 random realizations.

True DoA locations marked in red vertical dashed lines

Proposed ’StructCovMLE’ approach can identify two sources, unlike
SCM-based and even with forward-backward averaging in some cases
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More Sources than Sensors Scenario
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(a) StructCovMLE
(RMSE = 0.005)

(b) RAM
(RMSE = 0.106)

(d) GL-SPICE
(RMSE = 0.072)

Parameters: Nested array(Pal and Vaidyanathan 2010) with M = 6 sensors, locations={0, 1, 2, 3, 7, 11},
K = 8 sources, SNR = 20 dB, L = 4 snapshots, 20 random realizations.

Proposed ‘StructCovMLE’ algorithm able to localize all the 8 sources

Superior identifiability performance also evident from the lower RMSE
value (in u-space), as compared to the other techniques
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Conclusion & Future Work

Proposed a novel reformulation of the SBL optimization problem to recover
DoAs in gridless manner

Approach naturally leads to estimating a structured covariance matrix in the
MLE sense

Optimized the cost function iteratively using majorization-minimization; SDP in
each iteration

Provided perspectives to connect the new approach with the traditional MLE
framework and the modern SBL formulation

Future Work:

Lower complexity implementations to solve proposed ‘StructCovMLE’ problem

Grid-based discretization may not be necessary when parametric dimension is
small, scope to improve SBL with grid refinement

Thank you for your time!
Let me know if you have any questions.
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Review: Traditional Approach (2)

Methods Primary Bottleneck2

(a)
i. Spatial filtering (beamforming)
ii. Subspace based methods

Aperture/ degrees of freedom
Number of snapshots

(b) Deterministic/ Stochastic MLE Model & computational complexity

(a) Spectral based methods (b) Parametric methods

Table: Summary of traditional approaches

2H. Krim and M. Viberg (1996). “Two decades of array signal processing research: the
parametric approach”. In: IEEE Signal Processing Magazine 13.4, pp. 67–94.
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Comparison with SBL

SBL not only finds a structured matrix fit to the measurements, it also
factorizes it (not a major problem!)

SBL solution (which it factorizes) also in the search region of proposed
optimization problem

Root-MUSIC helps in this quest of factorization

Proposed approach finds a structured covariance matrix in MLE sense,
hence called ‘StructCovMLE’

‘StructCovMLE’ goes beyond SBL, provides gridless DoA estimation
(How?)
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Comparison with SBL (2)

Consider the following updated SBL optimization problem:

min
Φ

min
Γ⪰0,λ≥0

log det
(
ΦΓΦH + λI

)
+ tr

((
ΦΓΦH + λI

)−1

R̂y

)
. (9)

Theorem

The proposed problem in (6) and in (8) are equivalent, in that they achieve the
same globally minimum cost.

In other words, the proposed approach estimates a structured covariance matrix
fit to the measurements in the MLE sense over

all appropriate (i.e., array manifolds as columns) dictionaries for SBL

(OR) all model orders for classical MLE (not discussed here, shown in
paper).
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