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Police operation

• Atlanta is the 6th largest metropolitan area in 
the US with 6.08 million population, a booming 
city, and a fast-growing economy

• Atlanta Police Department (APD) is the major 
law enforcement agency in metro Atlanta, with 
1,700 officers and responses to over 3,000 calls 
per day.

• Spatial regions are divided into beats such that 
the total “911” call workload is balanced

• Atlanta has 6 zones, 78 beats total

2



Bias in crime “counts”

• Under-reporting

• Over-policing

How to detect bias and 
correct bias?

• A common problem in 
service systems: 
ambulance, delivery 
trucks
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911 call density



Under-reporting: Binomial (𝒏,𝒑) problem

• Observing 𝑌	~ binomial 𝑛, 𝑝

• We know on E 𝑌 = 𝑛𝑝

• Identifiability issue: With one 𝑌, we 
cannot estimate 𝑝 and 𝑛 at the same 
time
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(Draper and Guttman 1971) (Draper, 
Guttman 1971) (DasGupta, Rubin 2005)



Identifiability issue with one-sample

• Observing 𝑌~ binomial 𝑛, 𝑝
• We know 

E 𝑌 = 𝑛𝑝, VAR 𝑌 = 𝑛𝑝(1 − 𝑝)

• In theory: VAR 𝑌 /E 𝑌 = 1 − 𝑝

• In practice: we only observe one sample of 𝑋, we cannot estimate variance!

• Long history in statistics: Typical solution require prior distribution on 𝑛 or 
𝑝; however, can be subjective. 
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Graph structure
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𝑋! , 𝑌!

• Count 𝑌$ for each node 
• Covariate 𝑋$ for each node: Police data (911 call, GPS), census factors
• Adjacent nodes are “similar” 



Graph Binomial (𝒏, 𝒑) problem

• Node response 𝑌!: count in each node
• Binomial model 

𝑌! 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛! , 𝑝!
𝑝!: probability of discovery for node 𝑖
𝑛!: true count for node 𝑖
• Leverage graph smoothness on 𝑝!  over graph
• “Instrumental variable”: True count 𝑛! 	related to 

node feature 𝑥!
• Without using Bayesian priors
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Graph prediction problem

• Data: (𝑋! , 𝑌!), 𝑖 ∈ 𝑉
• Goal: estimate (𝑛! , 𝑝!), 𝑖 ∈ 𝑉

;𝑌! ≔ log	𝑌! ≈ log 𝑛! + log 𝑝! 	

• Known: Graph with adjacency matrix 𝐴
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Assumption 1: Graph smoothness on C𝑝!
Assumption 2: Covariates: 𝑛!  is related to 𝑋!

D𝒏 	≈ 𝑿𝜷

C𝑛! C𝑝!
𝑛! 𝑝!

𝑌!

𝑋!



Graph smoothness

• Graph Laplacian contains topology 
information 

𝐿 = 𝐷 − 𝐴
• Graph smoothness:

𝑧"𝐿𝑧 =
1
2
L
!,$ ∈&

𝑧! − 𝑧$
'
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𝑋! , 𝑌!



Convex reformulation
• Solve the following optimization problem

min
(𝒏,	(𝒑,𝜷

||Q𝒀 − D𝒏 − D𝒑||' + 𝜆-D𝒑"𝐿D𝒑 + 𝜆'||D𝒏 − 𝑿𝜷||''

• Regression:
                        U𝜷 = 𝑿"𝑿 .-𝑿"D𝒏, 𝑯 = 𝑰 − 𝑿 𝑿"𝑿 .-𝑿"

• Reduce to convex problem (GRAUD)
min
(𝒏,(𝒑

||Q𝒀 − D𝒏 − D𝒑||' + 𝜆-D𝒑"𝑳D𝒑 + 𝜆'D𝒏"𝑯D𝒏

• Can be solved efficiently using first-order method to global solution
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Recovery guarantee
• Assumption 1: Ground truth signals satisfy 

|D𝒑/"𝑳D𝒑/| ≤ 𝜀0, D𝒏/"𝑯D𝒏/ ≤ 𝜀1 are small
• Assumption 2: Null 𝑳 ∩ Null 𝑯 = 0
• Assumption 3: bounded observation “noise” ||Q𝒀 − D𝒏/ − D𝒑/||' ≤ 𝜀
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Theorem: Under Assumptions 1-3, solution ("𝒑∗, "𝒏∗) to GRAUD 
satisfies

||"𝒑∗ − "𝒑"|| ≤ 𝑐#𝜀 + 𝜀$, ||"𝒏∗ − "𝒏"|| ≤ 𝑐%𝜀 + 𝜀&
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Simulation

10 nodes
3 features for each node

𝑝! = 0.6 + 0.1𝑁(0, 1)



Real-data
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𝑝'

• Atlanta, data in 2019
• Lower staffing area has 

lower discovery rate



Summary
• A new graph prediction formulation for 

solving spatial binomial 𝑛, 𝑝  problem to 
correct undercount bias in data

• Convex reformulation leads to efficient 
algorithm and recovery guarantee

• On-going: time-series observations
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𝑋! , 𝑌!
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