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• The Drug Development Process

1 INTRODUCTION
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Journal of Health Economics, 2016, 47, 20-33.

 High costs, High risks, Long cycles, and Low success rates

  Lack of reliable key technologies for discovering lead structures

Future Medicinal Chemistry, 2020, 12, 939-947
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• Computational Intelligence in the Discovery of Lead

1 INTRODUCTION

Virtual Screening Drug Molecule Generation
J Mol Model, 2021, 27: 71

https://www.profacgen.com/computer-aided-drug-design.htm



2024/4/15 5

• Current Deep Learning Techniques for Molecular Generation

1 INTRODUCTION

Frontiers in Materials, 2022.

J. Chem. Inf. Model. 2022, 62, 2064–2076
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• Ligand Based and Structure Based Drug Molecule Generation

1 INTRODUCTION
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• Related Works – PETrans, CProMG

1 INTRODUCTION

Int. J. Mol. Sci. 2023, 24, 1146 Bioinformatics, 2023, 39, i326-i336
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• Related Works - cMolGPT

1 INTRODUCTION

Molecules, 2023, 28, 4430
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• Challenges

1 INTRODUCTION

Three key points in the structure-based molecular generation model workflow correspond to 

three key challenges:

⚫ The protein-ligand binding database

⚫ The type of target protein information 

⚫  The generative model architecture design
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• Solutions

1 INTRODUCTION

Where improvements can be achieved in the original system
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Generated Compound 

Protein Affinity Library

Expended

Target-specific 

Chemical Library
Virtual Screening LeadTarget-specific

Generative Model

Target Protein

Sequence Input

Affinity-guided

Protein Encoder Pre-trained DTA model Target-specific Attention



2024/4/15 11

Two Models

• 2.1 Two Models and a Four-stage Workflow

1. LT-DTA drug-target affinity prediction model 2. TD-GPT Targeted Molecular Generation Model

2 METHOD

Protein Sequence

Drug SMILES

Affinity Value
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• 2.1 Two Models and a Four-stage Workflow

BindingDB

LT-DTA Trained LT-DTA

Trained 
LT-DTA

MOSES
309 kinase targets

The expanded drug-target 
affinity database 

TD-GPT

The expanded drug-target 
affinity database 

Trained TD-GPT

Trained 
TD-GPT

New Target Protein Target-Specific
Drug Molecules

2 METHOD

Four-stage workflow

⚫ Training LT-DTA 

on BindingBD for affinity prediction;

⚫ Using LT-DTA 

to expand the drug-target affinity 

database for TD-GPT training;

⚫  Training TD-GPT 

on the expanded database; 

⚫ Using TD-GPT 

to generate target-specific molecules.
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The Linear Transformer and its Computational Flow Diagram

• 2.2 The LT-DTA Drug-Target Affinity Prediction Model
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2 METHOD
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• 2.2 The LT-DTA Drug-Target Affinity Prediction Model

The Vanilla Transformer employs a similarity 
function for query and key defined as

sim 𝑞𝑖 , 𝑘𝑗 = 𝑒

𝑞𝑖
𝑇𝑘𝑗

𝑑

the Linear Transformer uses a kernel function 
𝑘(𝑥, 𝑦):ℝ2×𝐹 → ℝ+ to define similarity

sim 𝒒𝑖 , 𝒌𝑗 = 𝜙 𝒒𝑖
⊤𝜑 𝒌𝑗

𝜙(𝑥) = 𝜑(𝑥) = elu(𝑥) + 1

By leveraging the associative property of matrix multiplication

Attention(𝑸,𝑲, 𝑽)𝑖 =
σ𝑗=1
𝑁 𝜙 𝑄𝑖

𝑇𝜙 𝐾𝑗 𝑉𝑗

σ𝑗=1
𝑁 𝜙 𝑄𝑖

𝑇𝜙 𝐾𝑗
=
𝜙 𝑄𝑖

𝑇 σ𝑗=1
𝑁 𝜙 𝐾𝑗 𝑉𝑗

𝜙 𝑄𝑖
𝑇 σ𝑗=1

𝑁 𝜙 𝐾𝑗

The Linear Transformer reduces the computational complexity to 𝑂(𝑁).

2 METHOD

The Linear Transformer and its Computational Flow Diagram

The attention mechanism 

of Transformer
The attention mechanism 

of Linear Transformer
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• 2.3 TD-GPT Targeted Molecular Generation Model

2 METHOD

The Molecular GPT Model 



2024/4/15 16

• 2.3 TD-GPT Targeted Molecular Generation Model

2 METHOD

The Affinity-Enhanced Protein Feature Encoder
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• 2.3 TD-GPT Targeted Molecular Generation Model

2 METHOD

Target Protein-Specific Attention Module
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• 2.3 TD-GPT Targeted Molecular Generation Model

⚫ input

⚫ GPT Transformer

⚫ probability detector

⚫ log-likelihood (NLL) loss of 

the decoded SMILES string

2 METHOD

GPT Molecular Generation Decoder
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• Experimental Design and Baselines

2. Target-specific Generation

by setting the protein target 

condition vector of TD-GPT to 0, 

assessing if the model grasped 

drug molecule properties

1. Non-target-specific Generation

NGram, VAE, AAE, LatenGAN 

⚫ Baselines:

checking its ability to produce 

molecules with target-binding 

capabilities cRNN, cMolGPT, PETrans 

⚫ Baselines:

3 EXPERIMENTS
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• Measures 

⚫ Measures related to model generation efficiency include:

➢ Validity：        Molecules that adhere to basic chemical rules

➢ Uniqueness： The proportion of unique molecules

➢ Novelty： Molecules not in the training set

➢ SNN： Shortest Novelty-Normalized

⚫ Measures related to the drug-likeness of generated molecules include:

➢ QED： Quantitative Estimate of Druglikeness

➢  SA： Synthetic Accessibility Score

➢ Activity

3 EXPERIMENTS



2024/4/15 21

⚫ BindingDB dataset

309 human kinase targets and 95,921 molecules, totaling 182,311 affinity data entries

⚫ MOSES dataset

consists of 1.9 million lead-like molecules from the ZINC dataset with a molecular 

weight of 250–350 Da

⚫ Extended (drug, target, affinity) triplet database

used the LD-DTA model to predict drug-target affinity on the MOSES dataset for the 

309 kinase targets, forming an extended (drug, target, affinity) triplet database, which 

served as the training dataset for the TD-GPT targeted molecular generation model.

3 EXPERIMENTS

• Datasets 
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• Non-target-specific Molecular Generation

4 RESULTS

Table 1.   Comparison of TD-GPT with Non-target-specific Generation Models. Bold font indicates the best.

Models Valid
Unique

@ 1k

Unique

@ 10k
Novelty SNN

Measures 

Product

HMM 0.076 0.623 0.567 - 0.388 -

NGram 0.238 0.974 0.922 - 0.521 -

VAE 0.977 1 0.998 0.695 0.608 0.412

AAE 0.937 1 0.997 0.695 0.626 0.406

LatentGAN 0.897 1 0.997 0.949 0.538 0.457

TD-GPT (Ours) 0.993 1 0.994 0.781 0.619 0.477
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• Target-specific Molecular Generation

Target Model Valid Unique @10k Novelty QED SA

EGFR

cRNN 0.921 0.861 0.662 - -

cMolGPT 0.885 0.940 0.898 - -

PETrans 0.895 0.719 1 0.452 2.736

TD-GPT (Ours) 0.934 0.978 0.962 0.742 2.672

HTR1A

cRNN 0.922 0.844 0.498 - -

cMolGPT 0.905 0.896 0.787 - -

PETrans 0.905 0.624 1 0.529 2.971

TD-GPT (Ours) 0.952 0.979 0.926 0.755 2.657

S1PR1

cRNN 0.926 0.861 0.514 - -

cMolGPT 0.926 0.838 0.684 - -

PETrans 0.815 0.420 1 0.459 2.559

TD-GPT (Ours) 0.995 0.980 0.931 0.751 2.666

Table 2.   Comparison of TD-GPT with Other Models for Target-specific Generation. Bold font indicates the best.

4 RESULTS
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• Target-specificity Experiment of TD-GPT

STK17A / LRRK2

Generated with LRRK2 as target

Generated with STK17A as target

4 RESULTS
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• Affinity(Activity) Controllability of TD-GPT

High Preset Activity

Medium Preset Activity

Low Preset Activity

4 RESULTS
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High-affinity (active) candidate drug molecules 

generated using the TD-GPT Framework.
Representative candidate drug molecule docking

results with the PDZ-binding kinase target.

4 RESULTS

• Example of Generating Target-Specific Candidate Drug Molecules
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1. TD-GPT, a novel deep learning framework for targeted drug molecule generation, 

integrates LT-DTA for affinity prediction and database expansion, 

2. and a target-specific attention module for optimized molecule generation, 

3. demonstrating superior performance in generating high-affinity, target-specific 

molecules.

5 SUMMARY
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THANKS！
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