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Abstract

Speech enhancement seeks to extract clean speech from noisy signals. Traditional deep learning methods face two challenges: efficiently using information
in long speech sequences and high computational costs. To address these, we introduce the Spiking Structured State Space Model (Spiking-S4). This approach
merges the energy efficiency of Spiking Neural Networks (SNN) with the long-range sequence modeling capabilities of Structured State Space Models
(S4), offering a compelling solution. Evaluation on the DNS Challenge and VoiceBank+Demand Datasets confirms that Spiking-S4 rivals existing Artificial
Neural Network (ANN) methods but with fewer computational resources, as evidenced by reduced parameters and Floating Point Operations (FLOPs).

Method

As shown in Fig. 1, the noisy speech signal is first transformed into the time-frequency domain using the Short-Time Fourier Transform (STFT) layer. Then, the
magnitude is fed into the linear encoder to generate the input u of shape K X L for the spiking S4 layers, where K is the length of the input sequence and L is
the independent S4 kernel number of each sequence element. Next it is passed to Nspiking S4 layers and a linear decoder, which produces a magnitude
mask M . This mask is then multiplied with the original magnitude to obtain the denoised magnitude. Finally, the denoised magnitude and the phase information
are combined and converted back to the time domain using Inverse Short-Time Fourier Transform (ISTFT) layer.

Noisy speech X maghnitude Enhanced speech X

| F | - » Spiking S4 Layer - :(L) - »*M“

mask

phase :
Fig. 1: The overall framework

As shown in Fig. 2, each step of the encoded feature is first passed to L independent S4 kernels with the hidden size of H . Then it is passed to an emission
layer, and a LIF node which collects input signals gradually, accumulating them over a duration of time, and generates a spike when the membrane potential
reaches a predefined threshold. Finally, the spikes are fed into a linear decoder to be restored back to the real domain.
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Fig. 2: The spiking S4 layer
Results
Table 1:Results on DNS Challenge 2023 validation set Table 2:Results on Voice-Bank+Demand dataset.The ANN Table 3:Comparision of parameters and FLOPs.
and test set.The ANN and SNN-based models are and SNN-based models are separated by a horizontal
separated by a horizontal line. line.
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