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Introduction–Diffusionmodels

• Diffusion models are a new class of generative models that have recently been applied to speech
enhancement12

• They iteratively add noise to the training data and learn to undo this process

• Noise schedule: defined by the hyperparameters f(t,xt) and g(t)
• Sampler: numerical method used to integrate the reverse process

1Y.-J. Lu et al., “Conditional diffusion probabilistic model for speech enhancement,” ICASSP, 2022
2J. Richter et al., “Speech enhancement and dereverberation with diffusion-based generative models,” IEEE/ACM Trans. Audio, Speech, and Lang. Process., 2023
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Introduction–Adaptation tospeechenhancement

• Output image ←→ Clean spectrogram
Text prompt ←→ Noisy spectrogram

• Provoke a drift towards the noisy spectrogram12

1S. Welker et al., “Speech enhancement with score-based generative models in the complex STFT domain,” INTERSPEECH, 2022
2J. Richter et al., “Speech enhancement and dereverberation with diffusion-based generative models,” IEEE/ACM Trans. Audio, Speech, and Lang. Process., 2023
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Motivation

• Goal: apply findings from image generation literature1 to improve speech enhancement performance
• Neural network preconditioning based on first principles
• Second-order Heun-based sampler

• Problem: the drift coefficient −γ(xt − y) cannot be written in the form f(t)xt

• Solution: change of variable nt = xt − y

dxt = −γ(xt − y) dt+ g(t) dωt

m
dnt = −γnt dt+ g(t) dωt

Or more generally,
dnt = f(t)nt dt+ g(t) dωt

• This allows to write
p(nt|n0) = N (nt; s(t)n0, s(t)

2σ(t)2I)

where

s(t) = exp

∫ t

0
f(ξ) dξ and σ(t)2 =

∫ t

0

g(ξ)2

s(ξ)2
dξ

1T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
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Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:

• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse
response databases

• N = 1 or N = 4 databases are used for the training condition and the remaining databases are
used for the mismatched condition

• Results are averaged across 5 different combinations

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases

• N = 1 or N = 4 databases are used for the training condition and the remaining databases are
used for the mismatched condition

• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Experimentalsetup

• Modifications to SGMSE+M1:
• Shifted-cosine noise schedule2

• Neural network preconditioning3

• Heun-based sampler3 instead of PC sampler4

• Evaluation in matched and mismatched conditions:
• Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse

response databases
• N = 1 or N = 4 databases are used for the training condition and the remaining databases are

used for the mismatched condition
• Results are averaged across 5 different combinations

Speech: TIMIT LibriSpeech WSJ Clarity VCTK
Noise: TAU NOISEX ICRA DEMAND ARTE
Room: Surrey ASH BRAS CATT AVIL

Training
Testing

1J.-M. Lemercier et al., “Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration,” ICASSP, 2023
2E. Hoogeboom et al., “simple diffusion: End-to-end diffusion for high resolution images,” ICML, 2023
3T. Karras et al., “Elucidating the design space of diffusion-based generative models,” NeurIPS, 2022
4Y. Song et al., “Score-based generative modeling through stochastic differential equations,” ICLR, 2021

April 16th, 2024 DTU Hearing Systems 5



Results

April 16th, 2024 DTU Hearing Systems 6



Results

April 16th, 2024 DTU Hearing Systems 6

Heun



Results

April 16th, 2024 DTU Hearing Systems 6

Heun Heun



Results

∆PESQ ∆ESTOI ∆SNR
M

at
ch

ed

Conv-TasNet 0.63 0.19 8.58
DCCRN 0.41 0.12 7.11

MANNER 0.68 0.17 7.24
SGMSE+M 0.65 0.18 7.33

Ours 0.72 0.20 7.27

M
is

m
at

ch
ed Conv-TasNet 0.12 0.01 3.24

DCCRN 0.11 0.02 3.25
MANNER 0.17 0.04 3.40

SGMSE+M 0.15 0.04 3.79
Ours 0.19 0.06 3.52

(a) N = 1

∆PESQ ∆ESTOI ∆SNR

M
at

ch
ed

Conv-TasNet 0.44 0.16 7.38
DCCRN 0.34 0.12 6.52

MANNER 0.52 0.15 6.23
SGMSE+M 0.55 0.18 6.74

Ours 0.61 0.19 6.54

M
is

m
at

ch
ed Conv-TasNet 0.29 0.09 5.77

DCCRN 0.23 0.07 5.42
MANNER 0.38 0.10 5.61

SGMSE+M 0.42 0.13 6.42
Ours 0.44 0.15 5.88

(b) N = 4

Table: Average ∆PESQ, ∆ESTOI and ∆SNR scores in matched and mismatched conditions when training with N = 1 (a) or
N = 4 (b) speech corpora, noise databases and BRIR databases. SGMSE+M and Ours use nsteps = 32.
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Conclusion

• The drift towards the noisy speech previously proposed for diffusion-based speech enhancement makes
it difficult to apply recent advances from image generation literature

• To overcome this, the diffusion process is reformulated using a change of variable

• A different neural network preconditioning and noise schedule only had a small effect on performance

• The Heun-based sampler substantially improved the performance at few sampling steps

• All systems substantially benefited from training with multiple corpora in mismatched conditions
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Thank you!
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