ПП

Bringing the Discussion of Minima Sharpness to the Audio Domain: a Filter-Normalised Evaluation for Acoustic Scene Classification

Manuel Milling^{1,2}, Andreas Triantafyllopoulos^{1,2}, Iosif Tsangko², Simon D. N. Rampp², Björn W. Schuller^{1,2,3}

1: Chair of Health Informatics,

Technical University of Munich, MRI, Germany

- 2: Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
- 3: Group on Language, Audio & Music, Imperial College London, UK

ICASSP 2024, Seoul, April 17, 2024

Motivation

- Despite good performance, training and generalisation of artificial neural networks (ANNs) only partly understood
- Common evaluations only concerned with development performance

 \rightarrow Particular challenges of expressiveness for out-of-distribution (OOD) data

- Flat minima (in contrast to sharp minima) often considered preferably desirable for generalisation [1]
 - \rightarrow Implications for optimiser design [2] or model selection

[2] Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2020). SSharpness-aware minimization for efficiently improving generalization.ärXiv preprint arXiv:2010.01412.

Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC

^[1] Sepp Hochreiter and Jürgen Schmidhuber, "Flat minima," Neural computation, vol. 9, no. 1, pp. 1–42, 1997.

Motivation

- Discussion mostly limited to
- in-domain (ID)
- computer vision (CV)
- benchmark datasets (CIFAR10, ...)
- sometimes artificial training settings
- Our goal: investigating sharpness in practical training settings wrt.
- Acoustic scene classification (ASC)
- Robustness
- Correlation with generalisation (test accuracy)
- OOD Data vs ID data
- Effects of different hyperparameters

Sharpness

- Assumption: an ANN with parameters θ has (to some degree) converged to a local minimum θ*
- Sharpness (and flatness respectively) refer to how quickly the loss function changes when moving away from the minimum

Sharpness

- Closely connected to Hessian matrix (curvature)
 - \rightarrow Computationally very expensive
- No unified definition/approach for calculation
- Mostly computed based on differences in the loss function in (random) directions, e.g. in 2D: (away from the minimum)

$$f(\alpha,\beta) = L(\theta^* + \alpha\delta + \beta\eta).$$

- L: loss function
- η , δ : random directions with dimensions equal to parameters heta

Filter-Normalisation

• Filter-normalisation introduced for visualisations of loss-landscape [3]

$$\delta_{i,j} \leftarrow rac{\delta_{i,j}}{||\delta_{i,j}||} || heta_{i,j}||$$

 $\delta_{i,j}$, $\theta_{i,j}$: components of the *j*th filter of the *i*th layer of the random directiona and parameters, respectively.

- Led to impactful discussion on drivers of flat minima and their benefits for generalisation
- No quantitative evaluation performed [2]

[3] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, "Visualizing the loss landscape of neural nets," in NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Curran Associates Inc., 2018, pp. 6391–6401. Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC

ε -Sharpness

• For quantification we rely on popular ε -sharpness [4]

$$s_{\varepsilon} = rac{\max_{\theta \in B(\varepsilon, \theta^*)}(L(\theta) - L(\theta^*))}{1 + L(\theta^*)} \times 100,$$

 $B(\varepsilon, \theta^*)$: (High-dimensional) ball of radius ε

- in 2D equals to point with highest loss within a cirle around θ^{\ast}

^[4] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang, "On large-batch training for deep learning: Generalization gap and sharp minima," in International Conference on Learning Representations, 2017. Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC

Experiments

- DCASE2020 acoustic scene classification dataset [5]
 - 10 s audio recordings (64 h total)
 - 10 different acoustic scenes recorded in 10 European cities
 - 3 real recording devices, 6 simulated devices
- PANNs models CNN10 and CNN14 (without pertaining) [6]
- · Common optimisers: SGD (with momentum) and Adam
- Including second order optimisers: GDTUO and KFAC
- Best development performance after a maximum of 50 epochs

^[5] Toni Heittola, Annamaria Mesaros, and Tuomas Virtanen, "Acoustic scene classification in dcase 2020 challenge: generalization across devices and low complexity solutions," in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2020 Workshop (DCASE2020), 2020, pp. 56–60.

^[6] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley, "Panns: Large-scale pretrained audio neural networks for audio pattern recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020. Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC

Experiments

Excluding non-converged models: 38 trained model states

NetworkCNN10, CNN14OptimiserSGD, Adam, GDTUO, KFACLearning Rate 10^{-3} , 10^{-4} , 10^{-5} Batch Size16, 32Random Seeds42, 43

Robustness

- 3 2D-sharpness values with different random directions
- Mean sharpness and standard deviation are reported
- Overall reasonable degree of robustness
- Some models with high deviations (e.g. ID 36)

Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC

Generalisation

- Positive correlation between sharpness and generalisation
- Effect even stronger for OOD data with generally lower performance
 - OOD = devices (microphones) not present in training data
- Surprising finding with studies showing no correlation or positive correlation [7]

[7] Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flammarion, "A modern look at the relationship between sharpness and generalization," arXiv preprint arXiv:2302.07011, 2023. Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC 11

Impact of Hyperparameters

- Similar impacts of hyperparameters on accuracy and sharpness
- Optimisers with highest difference in impact

Limitations

- Only one dataset and one sharpness measure explored
- Some limitations through robustness in sharpness measure
- Convergence-state of modeld not further considered

Conclusions

- Analysis of filter-normalised 2D ε -sharpness under common training conditions for ASC tasks
- Reasonable robustness across random directions
- Sharper minima correlate with better generalisation
- Optimisers having strong impact on sharpness
- Further evaluations on audio data necessary for a better picture
- Code, trained model states and visualisations available: https://github.com/EIHW/ASC_Sharpness

ТΠ

References

[1] Sepp Hochreiter and Jürgen Schmidhuber, "Flat minima," Neural computation, vol. 9, no. 1, pp. 1–42, 1997.

[2] Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2020). SSharpness-aware minimization for efficiently improving generalization.ärXiv preprint arXiv:2010.01412.

[3] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, "Visualizing the loss landscape of neural nets," in NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Curran Associates Inc., 2018, pp. 6391–6401.

[4] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang, "On large-batch training for deep learning: Generalization gap and sharp minima," in International Conference on Learning Representations, 2017.

[5] Toni Heittola, Annamaria Mesaros, and Tuomas Virtanen, "Acoustic scene classification in dcase 2020 challenge: generalization across devices and low complexity solutions," in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2020 Workshop (DCASE2020), 2020, pp. 56–60.

[6] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley, "Panns: Large-scale pretrained audio neural networks for audio pattern recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020.

[7] Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flammarion, "A modern look at the relationship between sharpness and generalization," arXiv preprint arXiv:2302.07011, 2023.

Manuel Milling (TUM) et al. | ICASSP 2024 | Filter-Normalised Sharpness in ASC