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Introduction

 Mood disorder contains Unipolar Depression (UD) and 

Bipolar Disorder(BD), which are mental illness.

 BD experiences two opposite and extreme emotional 

states: mania (high) and depression (low) through 

euthymia, which are different from UD.
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Motivation

 The doctors are likely to misdiagnose the patients in low 

mood of bipolar disorder as unipolar depression.

 According to the statistics, around 40% misdiagnosis leads to 

patients not receiving appropriate treatment. 

 Correct diagnosis, using DSM-5 as diagnostic criteria, 

needs a long-term tracking.

 Developing a system for mood disorder detection 

based on physiological signals or audio-visual signals 

can help doctor to correctly diagnose mood disorder.
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Goal

 Among these signals, speech is the most 

natural way to express emotion and the 

simplest way to collect data.

 How to develop a mood disorder detection

system for short-term detection becomes an 

important issue.
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CHI-MEI Mood Database Collection

 In a closed environment room.

 Only when the subject is in a stable mood-state, 
the evaluation could be conducted.
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CHI-MEI Mood Database Collection

 39 subjects (27 females and 12 males) from 3 different 

categories (13 BDs, 13 healthy controls (Cs) and 13 UDs) 

participated in the data collection process.

 All of the subjects watched 6 eliciting video clips with 

emotions of happiness, fear, surprise, anger, sadness and 

disgust and answered the following 5 questions.

 1. What do you think about the above video? (happy, sad, angry, 

disgusting, fearful and surprised)

 2. How intense is it? (ranging from 1 to 5)

 3. Which scene in the movie is impressive? Why?

 4. Do you have any similar experience like that scene?

 5. Are you feeling sick after watching above film

 Totally 1170 responses segments were collected
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CHI-MEI Mood Database Collection

 The whole process takes about 30 to 40 
minutes.
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CHI-MEI Mood Database Collection

 Each participant provides six responses.

 Each response contains 5 answers with 

respect  to 5 questions.
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CHI-MEI Mood Database Collection

 Because labeling the sentence with emotion tags is 

difficult and tedious, the CHI-MEI mood database is not 

labeled.

 The eNTERFACE database is selected as the 

adaptation database of the emotion detector 

 Because this database contains six emotional expressions the 

same as CHI-MEI mood database

 The eNTERFACE database

 were provided by 42 subjects (18 females and 24 males) from 14 

different nationalities

 Each subject was recorded for 6 emotions, and there were 5 

different sentences for each emotion
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System Framework
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Database Adaptation

 OpenSMILE is employed to extract the acoustic 

features of 384 dimensions

 Training data: the eNTERFACE databases with 

emotion labels (source domain)

 Test data: the CHI-MEI Mood database (target 

domain)

 A domain adaptation method,  Hierarchical 

Spectral Clustering (HSC), is adopted to adapt 

the eNTERFACE databases to fit the CHI-MEI 

mood database
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Database Adaptation –

Hierarchical Spectral Clustering (HSC

1. u1 and v1 are the centroids of U and 
V

2. Shifted the U by the deviation vector 
p1=u1-v1. 

3. Clustering V by k-means.

4. Calculating the centroid of each V2i.

5. All elements in U belong to its 
nearest V2i.

6. Calculating the centroid of each U2i, 
and deviation vector between U2i 

and V2i.

7. Each cluster element ci in shifted U 
is shifted as 

8. Repeat from step3 to step7
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Reconstruction from Biased (Noisy) Data

 The adapted data are used as the input to train 

a denoising autoencoder (DAE) 

 The DAE reconstructs the CHI-MEI-adapted 

eNTERFACE emotional data, which are 

regarded as the eNTERFACE data with noises

due to different environments, participants, 

expressions, etc. to the original eNTERFACE

emotional data.
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HSC-based Denoising Autoencoder
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Emotion Profile Generation

 An SVM-based Emotion Profile (EP) detector is 

adopted to provide a quantitative measure for 

expressing the degree of the presence or absence of a 

set of basic emotions within an expression. [Mower et al. 2011]
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 𝑂𝑛 is the n-th input feature sequence.
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Long Short-Term Memory (LSTM)

 LSTM-based method considering the temporal 

evolution is employed to precisely characterize 

the time-varying signal characteristics.

 Xt is the EP vector at time t
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Experimental setup

 The proposed method was evaluated using 

13-fold cross validation

 Each fold contains 36 subjects for training and 

3 subjects (one of each category, i.e., BDs, Cs, 

or UDs) for testing

 Linearly scaling each attribute to the range [0, 

1] for both training and test data was used
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Experimental results (1)

 For optimizing the parameters used in the HSC-DAE, 

the number of hidden nodes should be determined first

 X-axis is the number of hidden nodes and Y-axis represents the 

Mean Squared Error (MSE) of the HSC-DAE

 We selected the reconstructed data which were trained by 900 

hidden nodes

19



Experimental results (2)

 We compared forward/backward LSTMs and BLSTM to 

analyze if the past and future contexts could influence 

mood disorder detection

 All networks consisted of one hidden layer and each LSTM 

memory block contained one memory cell

 The networks were trained on the training set until the cross 

entropy error did not improve for at least 10 epochs
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Experimental results (3)

 Motivated by the success of Deep Neural 

Network, we stacked two LSTMs and two 

BLSTMs respectively
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Experimental results (4)

 Comparison among different classifiers

The SVM performed grid search with Radial basis 

function (RBF) kernel using LibSVM toolkit

The MLP was a three-layer topology with 64 

hidden nodes which were fine-tuned to achieve 

the best performance

 The LSTM-based classifiers outperformed 

SVM and MLP classifiers

22



Conclusions

 We proposed an LSTM-based approach to 

modeling the long-range contextual information 

based on the temporal change of speech 

responses for mood disorder detection

 The HSC-DAE method was employed for domain 

adaptation and data denoising.

 The LSTM-based method is applied to model the EP 

sequence for mood disorder detection

 In the future, combining other modalities such 

as facial expression information is helpful to 

improve system performance
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