Unsupervised Speech Enhancement with Diffusion-based Generative Models

Berné Nortier, Mostafa Sadeghi & Romain Serizel

Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France

2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024)

April 14-19, Seoul, Korea.

What is speech enhancement?

• In practice, speech is recorded in noisy environments \rightarrow speech enhancement (SE)

SE: Given noisy speech observation $\mathbf{x} = \mathbf{s} + \mathbf{n}$, estimate the clean speech signal \mathbf{s} .

What is speech enhancement?

• In practice, speech is recorded in noisy environments \rightarrow speech enhancement (SE)

SE: Given noisy speech observation $\mathbf{x} = \mathbf{s} + \mathbf{n}$, estimate the clean speech signal \mathbf{s} .

• Complex-valued short-time Fourier transform domain

Approaches to SE

 \triangleright Supervised: Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$

Approaches to SE

- \triangleright **Supervised:** Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ
 - Train on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}$

- \triangleright **Supervised:** Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ
 - Train on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}$
 - Implicit prior modelling $p_{\theta}(\mathbf{s})$ via inductive biases (architecture, optimizer, etc.)

- \triangleright Supervised: Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ
 - Train on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}$
 - Implicit prior modelling $p_{\theta}(\mathbf{s})$ via inductive biases (architecture, optimizer, etc.)

- > Unsupervised:
 - Training -

- only on clean speech signals

- \triangleright Supervised: Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ
 - Train on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}$
 - Implicit prior modelling $p_{\theta}(\mathbf{s})$ via inductive biases (architecture, optimizer, etc.)

- > Unsupervised:
 - Training Learn speech's prior distribution $p_{\theta}(s)$ only on clean speech signals

- \triangleright Supervised: Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ
 - Train on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}$
 - Implicit prior modelling $p_{\theta}(\mathbf{s})$ via inductive biases (architecture, optimizer, etc.)

$$\triangleright \text{ Unsupervised: Model } p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto \underbrace{p_{\phi}(\mathbf{x}|\mathbf{s})}_{\text{Inference }} \underbrace{p_{\theta}(\mathbf{s})}_{\text{Training}}, \text{ and learn } \Theta = \theta \cup \phi$$

• Training - Learn speech's prior distribution $p_{\theta}(s)$ - only on clean speech signals

- \triangleright **Supervised:** Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ
 - Train on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}$
 - Implicit prior modelling $p_{\theta}(\mathbf{s})$ via inductive biases (architecture, optimizer, etc.)

$$\triangleright \text{ Unsupervised: Model } p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto \underbrace{p_{\phi}(\mathbf{x}|\mathbf{s})}_{\text{Inference }} \underbrace{p_{\theta}(\mathbf{s})}_{\text{Training}}, \text{ and learn } \Theta = \theta \cup \phi$$

- Training Learn speech's prior distribution $p_{\theta}(\mathbf{s})$ only on clean speech signals
- Inference Model $p_{\phi}(\mathbf{x}|\mathbf{s})$, and infer \mathbf{s} using $p_{\theta}(\mathbf{s})$

May offer superior generalization

Score-based generative models for SE

▷ Previous (supervised) diffusion-based work: SMGSE+ ¹

• Gradually corrupt clean speech with both Gaussian and environmental noise

¹J. Richter *et al.*, "Speech enhancement and dereverberation with diffusion-based generative models," IEEE/ACM TASLP, 2023.

Score-based generative models for SE

▷ Previous (supervised) diffusion-based work: SMGSE+ ¹

- Gradually corrupt clean speech with both Gaussian and environmental noise
- Learn a neural network (conditional score model) to revert the process

¹J. Richter *et al.*, "Speech enhancement and dereverberation with diffusion-based generative models," IEEE/ACM TASLP, 2023.

Score-based generative models for SE

▷ Previous (supervised) diffusion-based work: SMGSE+ ¹

- Gradually corrupt clean speech with both Gaussian and environmental noise
- Learn a neural network (conditional score model) to revert the process

• Processes can be modelled as a Stochastic Differential Equation (SDE)

B.L. Nortier, M. Sadeghi & R. Serizel (Inria)

¹J. Richter *et al.*, "Speech enhancement and dereverberation with diffusion-based generative models," IEEE/ACM TASLP, 2023.

 $p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto p_{\phi}(\mathbf{x}|\mathbf{s}) p_{ heta}(\mathbf{s})$

```
p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto p_{\phi}(\mathbf{x}|\mathbf{s}) p_{	heta}(\mathbf{s})
```

▷ **UDiffSE** modelling framework:

• $p_{\theta}(\mathbf{s})$: Learn via an *unconditional* diffusion model

```
p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto p_{\phi}(\mathbf{x}|\mathbf{s}) p_{	heta}(\mathbf{s})
```

- > **UDiffSE** modelling framework:
 - $p_{\theta}(\mathbf{s})$: Learn via an *unconditional* diffusion model
 - $p_{\phi}(\mathbf{x}|\mathbf{s})$: Model noise $\mathbf{n} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \operatorname{diag}(\mathbf{v}_{\phi}))$

```
p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto p_{\phi}(\mathbf{x}|\mathbf{s}) p_{	heta}(\mathbf{s})
```

- > **UDiffSE** modelling framework:
 - $p_{\theta}(\mathbf{s})$: Learn via an *unconditional* diffusion model
 - $p_{\phi}(\mathbf{x}|\mathbf{s})$: Model noise $\mathbf{n} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \operatorname{diag}(\mathbf{v}_{\phi}))$

$$p_{\phi}(\mathbf{x}|\mathbf{s}) = \mathcal{N}_{\mathbb{C}}\Big(\mathbf{s}, \operatorname{diag}(\mathbf{v}_{\phi})\Big)$$

```
p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto p_{\phi}(\mathbf{x}|\mathbf{s}) p_{	heta}(\mathbf{s})
```

- > **UDiffSE** modelling framework:
 - $p_{\theta}(\mathbf{s})$: Learn via an *unconditional* diffusion model
 - $p_{\phi}(\mathbf{x}|\mathbf{s})$: Model noise $\mathbf{n} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \operatorname{diag}(\mathbf{v}_{\phi}))$

$$p_{\phi}(\mathbf{x}|\mathbf{s}) = \mathcal{N}_{\mathbb{C}}\Big(\mathbf{s}, \operatorname{diag}(\mathbf{v}_{\phi})\Big)$$

• $\mathbf{v}_{\phi} = \operatorname{vec}(\mathbf{WH}) \leftarrow$ non-negative matrix factorisation (NMF)

Inference framework: Expectation-maximisation

 \triangleright Iterative **Expectation Maximisation**-based inference (k = 1, ..., K):

1. E-step: Draw posterior sample

 $\hat{\mathbf{s}}_k \sim p_{\Theta_{k-1}}(\mathbf{x}|\mathbf{s}) \quad o \text{reverse diffusion}$

Inference framework: Expectation-maximisation

 \triangleright Iterative **Expectation Maximisation**-based inference (k = 1, ..., K):

1. E-step: Draw posterior sample

$$\hat{\mathbf{s}}_k \sim p_{\Theta_{k-1}}(\mathbf{x}|\mathbf{s}) \quad o \text{reverse diffusion}$$

2. M-step: Maximise likelihood

$$\phi_k \leftarrow \underset{\phi}{\operatorname{argmax}} \log p_{\phi}(\mathbf{x}|\hat{\mathbf{s}}_k) \longrightarrow \operatorname{NMF} update$$

Prior: Diffusion-based speech generative model

▷ Unconditional (prior) diffusion model for complex-valued clean speech STFT:

• Noising (forward) SDE: ² $ds_t = f(s_t)dt + g(t)dw, f(s_t) = -\gamma s_t$

²Y. Song *et al.*, "Score-based generative modelling through stochastic differential equations", ICLR, 2021.

Prior: Diffusion-based speech generative model

▷ Unconditional (prior) diffusion model for complex-valued clean speech STFT:

• Noising (forward) SDE: ² $ds_t = f(s_t)dt + g(t)dw, f(s_t) = -\gamma s_t$

• Denoising (reverse) SDE: $ds_t = [f(s_t) - g(t)^2 \nabla_{s_t} \log p_t(s_t)] dt + g(t) dw$

B.L. Nortier, M. Sadeghi & R. Serizel (Inria)

 $^{^{2}}$ Y. Song *et al.*, "Score-based generative modelling through stochastic differential equations", ICLR, 2021.

Prior: Approximating the score

Knowing the score function enables sampling from the prior. Approximate it instead:

$$egin{aligned} &\mathrm{d}\mathbf{s}_t = \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \
abla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t) \
ight] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \ &\approx \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \mathbf{S}_{\theta^*}(\mathbf{s}_t, t) \
ight] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \end{aligned}$$

Prior: Approximating the score

Knowing the score function enables sampling from the prior. Approximate it instead:

$$egin{aligned} &\mathrm{d}\mathbf{s}_t = \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \
abla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t) \
ight] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \ &\approx \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \mathbf{S}_{ heta^*}(\mathbf{s}_t, t) \
ight] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \end{aligned}$$

1. Learn $S_{\theta}(s_t, t)$:

$$heta^* = \operatorname*{argmin}_{ heta} \mathbb{E}_{t, \mathbf{s}, \boldsymbol{\zeta}, \mathbf{s}_t \mid \mathbf{s}} \Big[\| \mathbf{S}_{ heta}(\mathbf{s}_t, t) + rac{\boldsymbol{\zeta}}{\sigma(t)} \|_2^2 \Big], \quad \boldsymbol{\zeta} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \mathbf{I})$$

Prior: Approximating the score

Knowing the score function enables sampling from the prior. Approximate it instead:

$$egin{aligned} &\mathrm{d}\mathbf{s}_t = \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \
abla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t) \
ight] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \ &\approx \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \mathbf{S}_{ heta^*}(\mathbf{s}_t, t) \
ight] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \end{aligned}$$

1. Learn $S_{\theta}(s_t, t)$:

$$heta^* = \operatorname*{argmin}_{ heta} \mathbb{E}_{t, \mathbf{s}, \boldsymbol{\zeta}, \mathbf{s}_t \mid \mathbf{s}} \Big[\| \mathbf{S}_{ heta}(\mathbf{s}_t, t) + rac{\boldsymbol{\zeta}}{\sigma(t)} \|_2^2 \Big], \quad \boldsymbol{\zeta} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \mathbf{I})$$

2. Numerically sample from the prior $p_{\theta}(s)$

☞ The above SDE can be solved by the *Predictor-Corrector (PC) sampler*

Once the prior score model is trained, SE is performed via EM:

E-step: Approximate the conditional reverse SDE:

$$\mathrm{d}\mathbf{s}_t = \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2
abla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t | \mathbf{x}) \Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w}$$

 $^{^3}$ X. Meng and Y. Kabashima, "Diffusion model based posterior sampling for noisy linear inverse problems," 2022.

Once the prior score model is trained, SE is performed via EM:

E-step: Approximate the conditional reverse SDE:

$$\begin{split} \mathbf{d}\mathbf{s}_t &= \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t | \mathbf{x})\right] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \\ &= \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \left(\nabla_{\mathbf{s}_t} \log p_{\phi}(\mathbf{x} | \mathbf{s}_t) + \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t)\right)\right] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \end{split}$$

 $^{^3}$ X. Meng and Y. Kabashima, "Diffusion model based posterior sampling for noisy linear inverse problems," 2022.

E-step: Approximate the conditional reverse SDE:

$$\begin{split} \mathbf{d}\mathbf{s}_t &= \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t | \mathbf{x})\right] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \\ &= \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \left(\nabla_{\mathbf{s}_t} \log p_{\phi}(\mathbf{x} | \mathbf{s}_t) + \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t)\right)\right] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \end{split}$$

▲ *Intractable*, time-dependent likelihood!

Approximation by the "noise-perturbed pseudo-likelihood score"³ $\nabla_{\mathbf{s}_t} \log \tilde{p}_{\phi}(\mathbf{x}|\mathbf{s}_t)$

 $^{^3}$ X. Meng and Y. Kabashima, "Diffusion model based posterior sampling for noisy linear inverse problems," 2022.

E-step: Approximate the conditional reverse SDE:

$$\begin{split} \mathbf{d}\mathbf{s}_t &= \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t | \mathbf{x})\right] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \\ &= \left[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \left(\nabla_{\mathbf{s}_t} \log p_{\phi}(\mathbf{x} | \mathbf{s}_t) + \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t)\right)\right] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \end{split}$$

▲ Intractable, time-dependent likelihood!

Approximation by the "noise-perturbed pseudo-likelihood score"³ $\nabla_{\mathbf{s}_t} \log \tilde{p}_{\phi}(\mathbf{x}|\mathbf{s}_t)$

$$\widetilde{
ho}_{\phi}(\mathbf{x}|\mathbf{s}_t) \sim \mathcal{N}_{\mathbb{C}}\Big(\frac{\mathbf{s}_t}{\delta_t}, \frac{\sigma(t)^2}{\delta_t^2}\mathbf{I} + \operatorname{diag}(\mathbf{v}_{\phi})\Big), \qquad \delta_t = \mathrm{e}^{-\gamma t}$$

 $^{^{3}}$ X. Meng and Y. Kabashima, "Diffusion model based posterior sampling for noisy linear inverse problems," 2022.

E-step: Approximate the conditional reverse SDE:

$$\begin{split} \mathrm{d}\mathbf{s}_t &= \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t | \mathbf{x}) \Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \\ &= \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\left[\nabla_{\mathbf{s}_t} \log p_\phi(\mathbf{x} | \mathbf{s}_t) + \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t) \Big) \Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \\ &\approx \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\lambda \nabla_{\mathbf{s}_t} \log \tilde{p}_\phi(\mathbf{x} | \mathbf{s}_t) + \mathbf{S}_{\theta^*}(\mathbf{s}_t, t) \Big) \Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w} \end{split}$$

E-step: Approximate the conditional reverse SDE:

$$\begin{split} \mathbf{d}\mathbf{s}_t &= \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t | \mathbf{x}) \Big] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \\ &= \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\nabla_{\mathbf{s}_t} \log p_{\phi}(\mathbf{x} | \mathbf{s}_t) + \nabla_{\mathbf{s}_t} \log p_t(\mathbf{s}_t) \Big) \Big] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \\ &\approx \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\lambda \nabla_{\mathbf{s}_t} \log \tilde{p}_{\phi}(\mathbf{x} | \mathbf{s}_t) + \mathbf{S}_{\theta^*}(\mathbf{s}_t, t) \Big) \Big] \mathbf{d}t + g(t) \mathbf{d}\mathbf{w} \end{split}$$

• λ : weighting parameter to balance prior and likelihood terms.

E-step:

$$\mathrm{d}\mathbf{s}_t = \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\lambda \nabla_{\mathbf{s}_t} \log \tilde{\rho}_{\phi}(\mathbf{x}|\mathbf{s}_t) + \mathbf{S}_{\theta^*}(\mathbf{s}_t, t)\Big)\Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w}$$

E-step:

$$\mathrm{d}\mathbf{s}_t = \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\lambda \nabla_{\mathbf{s}_t} \log \tilde{p}_{\phi}(\mathbf{x}|\mathbf{s}_t) + \mathbf{S}_{\theta^*}(\mathbf{s}_t, t) \Big) \Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w}$$

M-step:

E-step:

$$\mathrm{d}\mathbf{s}_t = \Big[\mathbf{f}(\mathbf{s}_t) - g(t)^2 \Big(\lambda \nabla_{\mathbf{s}_t} \log \tilde{p}_{\phi}(\mathbf{x}|\mathbf{s}_t) + \mathbf{S}_{\theta^*}(\mathbf{s}_t, t) \Big) \Big] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w}$$

M-step:

$$egin{array}{lll} \phi^{*} \leftarrow rgmax & \log p_{\phi}(\mathbf{x}|\hat{\mathbf{s}}) \ & \mathbf{v}_{\phi}(i) \geq 0 \end{array} & = rgmin & \sum_{i} rac{(\mathbf{x} - \hat{\mathbf{s}})_{i}^{*}(\mathbf{x} - \hat{\mathbf{s}})_{i}}{\mathbf{v}_{\phi}(i)} + \log(\mathbf{v}_{\phi}(i)) \end{array}$$

Pre-training	Posterior sampling		Output
$\rho_{\theta}(\mathbf{s})$	$m{\cdot} \qquad p_{\phi}({f x} {f s})$	\propto	$p_{\Theta}(\mathbf{s} \mathbf{x})$
			Clean speech estimate (posterior sample) Ŝ

B.L. Nortier, M. Sadeghi & R. Serizel (Inria)

B.L. Nortier, M. Sadeghi & R. Serizel (Inria)

B.L. Nortier, M. Sadeghi & R. Serizel (Inria

B.L. Nortier, M. Sadeghi & R. Serizel (Inria

B.L. Nortier, M. Sadeghi & R. Serizel (Inria

Experiments

• Datasets.

- Training: WSJ0 (\sim 25hrs)
- Testing: WSJ0-QUT (1.5hrs), TCD-TIMIT (45mins)
- Noise levels (dB): [-5,0,5].
- Noise types: Café, Home, Street, and Car

Evaluation Metrics.

- Objective measures: SI-SDR, ESTOI, PESQ
- (Pseudo)-subjective measures: DNS-MOS (SIG, BAK, OVRL)
- **Baselines**. RVAE, SGMSE+ (pre-trained).
- Models architecture. Multi-resolution U-Net as in SGMSE+.
- EM settings. NMF rank 4. K = 5 EM iterations. Averaging over b = 4 parallel sample batches. Weighting parameter λ = 1.5.

Results

B.L. Nortier, M. Sadeghi & R. Serizel (Inria)

UDiffSE

11 / 12

Conclusion & next directions

▷ Conclusions

- UDiffSE: *Proof of concept*
- Learning an implicit prior distribution over clean speech data
- An EM approach to generate clean speech & learn the noise parameters at the same time
- Better generalisation & outperforms VAE (also less artifacts)

Conclusion & next directions

▷ Conclusions

- UDiffSE: *Proof of concept*
- Learning an implicit prior distribution over clean speech data
- An EM approach to generate clean speech & learn the noise parameters at the same time
- Better generalisation & outperforms VAE (also less artifacts)

▷ Next steps

- 1. Speeding up inference
- 2. Investigating generalisational capability
- 3. Improving prior

GitHub

Demo

https://github.com/joanne-b-nortier/udiffse https://team.inria.fr/multispeech/demos/udiffse/

Additional resources

Results II

Algorithm 2 Posterior sampling (E-step) of UDiffSE

Require: x, N, ℓ , λ , r(signal-to-noise ratio) 1: $\mathbf{s}_1 \sim \mathcal{N}_{\mathbb{C}}(\mathbf{x}, \mathbf{I}), \Delta \tau \leftarrow \frac{1}{N}$ 2: for i = N, ..., 1 do 3: $\tau \leftarrow \frac{i}{N}$ 4: $\epsilon_{\tau} \leftarrow (\sigma_{\tau} \cdot r)^2$ 5: $\boldsymbol{\zeta}_{c} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \mathbf{I})$ \triangleright (Corrector) $\begin{aligned} & \epsilon & \mathbf{s}_{\tau} \leftarrow \mathbf{s}_{\tau} + \epsilon_{\tau} \mathbf{S}_{\theta^{*}}(\mathbf{s}_{\tau}, \tau) + \sqrt{2\epsilon_{\tau}} \boldsymbol{\zeta}_{c} \\ & \epsilon & \mathbf{\zeta}_{p} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \mathbf{I}) & \triangleright (Pr \\ & \mathbf{s}_{\tau} \leftarrow \mathbf{s}_{\tau} - \mathbf{f}_{\tau} \Delta \tau + g_{\tau}^{2} \mathbf{S}_{\theta^{*}}(\mathbf{s}_{\tau}, \tau) \Delta \tau + g_{\tau} \sqrt{\Delta \tau} \boldsymbol{\zeta}_{p} \end{aligned}$ \triangleright (Predictor) 9: **if** $i \equiv 0 \pmod{\ell}$ then \triangleright (Posterior) $abla_{\mathbf{s}_{\tau}} \log \tilde{p}_{\phi}(\mathbf{x}|\mathbf{s}_{\tau}) \leftarrow \frac{1}{\delta_{\tau}} \Big[\frac{\sigma_{\tau}^2}{\delta^2} \mathbf{I} + \operatorname{diag}(\boldsymbol{v}_{\phi}) \Big]^{-1} (\frac{\mathbf{s}_{\tau}}{\delta_{\tau}} - \mathbf{x})$ 10: $\mathbf{s}_{\tau} \leftarrow \mathbf{s}_{\tau} + \lambda q_{\tau}^2 \nabla_{\mathbf{s}_{\tau}} \log \tilde{p}_{\phi}(\mathbf{x}|\mathbf{s}_{\tau}) \Delta \tau$ 11: end if 12: 13: end for 14: return $\hat{\mathbf{s}} = \mathbf{s}_0$