# alexaHot-Fixing Wake Work Recognition for End-<br/>to-End ASR via Neural Model Reprogramming

Pin-Jui Ku\*, **I-Fan Chen**, Chao-Han Huck Yang, Anirudh Raju, Pranav Dheram, Pegah Ghahremani, Brian King, Jing Liu, Roger Ren, Phani Sankar Nidadavolu <sup>\*</sup>Georgia Tech, Georgia, USA <sup>2</sup> Amazon Alexa Al, USA

#### Introduction

- Motivation: Hotfix the deployed ASR model without updating the model weights.
- Contributions
  - Proposed two neural reprogramming approaches for RNN-T based ASR models.
  - Verify the effectiveness of the approach on wake word recognition tasks.

## Results

 The averaged False Rejection Rate (FRR) over the five wake words and Word Error Rate (WER) on the synthesized WW and w/o WW voice command eval utterances and LibriSpeech test-clean datasets

| System                 | FRR (%) | WER (%) |        |       |
|------------------------|---------|---------|--------|-------|
| System                 |         | WW      | w/o WW | Libri |
| <b>B1</b> : pretrained | 98.1    | 27.0    | 7.8    | 4.6   |
| <b>B2</b> : finetuning | 0.1     | 4.0     | 4.8    | 4.7   |
| E1: trigger-frame      | 22.9    | 11.5    | 8.9    | 4.8   |
| E2: pred-state init    | 2.8     | 7.0     | 8.7    | 4.7   |

 In depth analyses show the advantage and limitation of the approaches

# Methodology

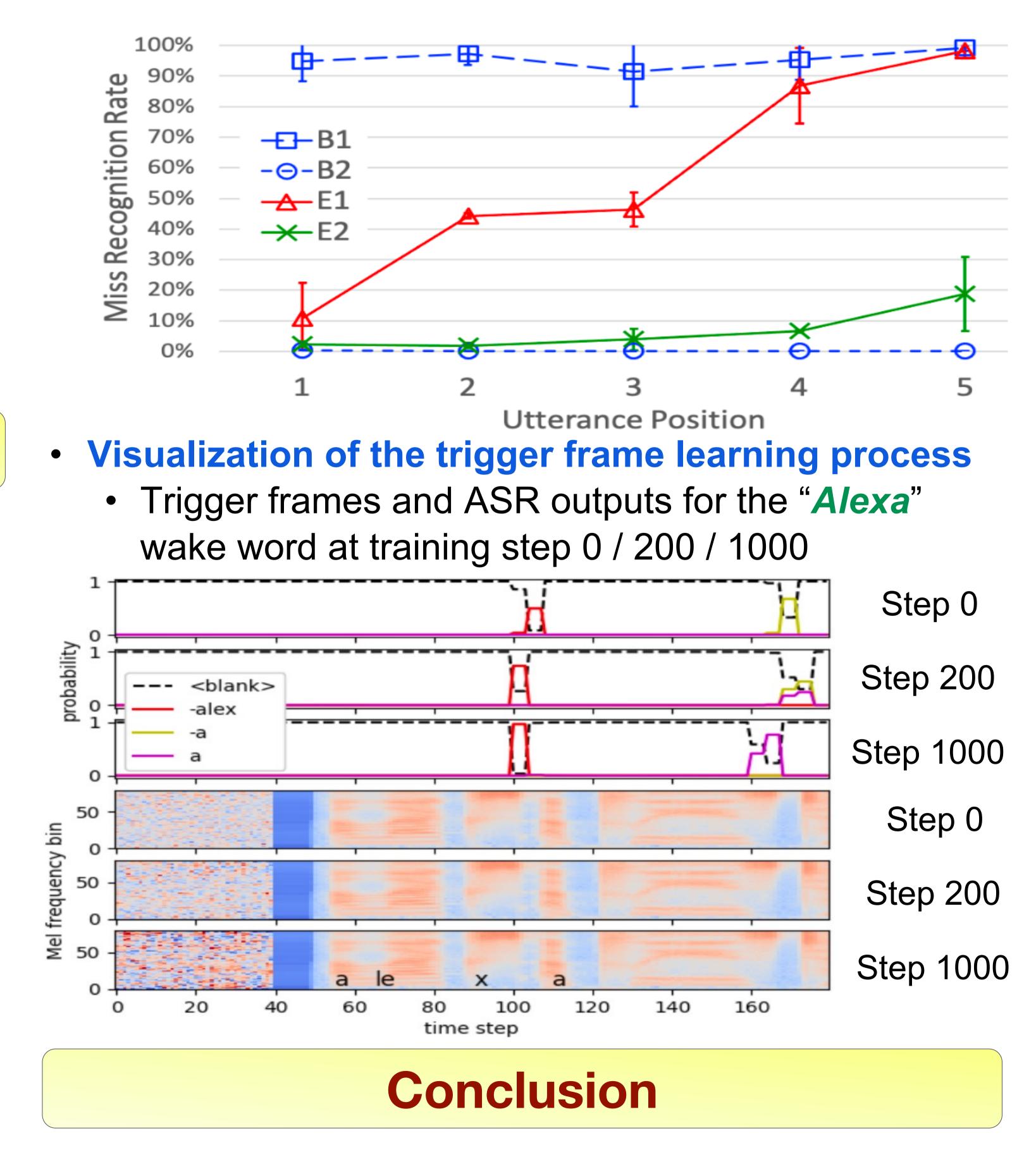
- **Problem Formulation** 
  - Fix incorrect output  $y_i^e = f(\mathbf{X}_t, \mathbf{Y}_{i-1})$  speech from streaming ASR by introducing

g(), where

- $\widetilde{\mathbf{X}}_t, \widetilde{\mathbf{Y}}_{i-1} = \mathbf{g}(\mathbf{X}_t, \mathbf{Y}_{i-1})$
- so that  $y_i = f(g(\mathbf{X}_t, \mathbf{Y}_{i-1}))$

### • Approach 1: Trigger Frames

- $g(\mathbf{X}_t, \mathbf{Y}_{i-1}) = [\mathbf{T}; \mathbf{X}_t], \mathbf{Y}_{i-1}$ 
  - **T**: Trainable prepending feature frames


- Analysis: Impact of Target Word Utterance Position
  - Place the target wake-word at utterance position I following the template.
  - Effectiveness of the approach reduced
    as the utt position of the target word
    increased.

|   | Position | Template                                        |
|---|----------|-------------------------------------------------|
|   | 1        | <wake_word_name></wake_word_name>               |
| f | 2        | Call <wake_word_name></wake_word_name>          |
|   | 3        | Tell me <wake_word_name></wake_word_name>       |
|   | 4        | How are you <wake_word_name></wake_word_name>   |
|   | 5        | Do me a favor <wake_word_name></wake_word_name> |

1

ICASSP

2024 KOREA



- Approach 2: RNN-T Predictor-State Initialization •  $g(\mathbf{X}_t, \mathbf{Y}_{i-1}) = \mathbf{X}_t, [\mathbf{T}; \mathbf{Y}_{i-1}]$ 
  - Equivalent to the customized prediction-state initialization for any stateful prediction network model.

# **Experimental Setup**

#### • Scenario

 Adapting the 76M LibriSpeech pretrained torch audio Emformer RNN-T model (B1) to recognize voice command speech w/ wake words.

|                     | # Trainable  | # Trainable   |  |
|---------------------|--------------|---------------|--|
| System              | Param inside | Param outside |  |
|                     | ASR Model    | ASR Model     |  |
| B2: Finetuning      | 76 M         | 0             |  |
| E1: Trigger-Frame   | 0            | 3,200         |  |
| EQ. Drad State Init | 0            | 2 072         |  |



3,072

ASR Model

alexa

alex a

- Synthesized voice command speech w/ wake words
- [5 wake words + SLURP sentences] + ESPNet TTS
- Wake words: Alexa, Cortana, Disney, Google, Siri
- Example utterances
  - w/o WW: "send a request to Martin"
  - WW: "Cortana send a request to Martin"
- The following data was used for each wake word:
  - 60 x 2 = 120 training utts; 1049 x 2 = 2098 val utts
  - 1524 x 2 (spkr) = 3048 eval utt
- Also evaluated on LibriSpeech Test Clean
- We can effectively hotfix the ASR models without updating the model weights.
- The effectiveness of the current approaches suffers from the distance to the reprogramming injection place, which can be a future research direction.