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Multivariate Time Series over Networks
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Data have now a spatial dependency and a temporal dependency
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Graphs for Multivariate Time Series

Graphs can be used to model multivariate time series

= The structure is a graph
= Time series are time-varying data assigned to the nodes
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Graphs for Multivariate Time Series

Graphs can be used to model multivariate time series

= The structure is a graph
= Time series are time-varying data assigned to the nodes

Nodes: junctions/sources in the city V

Edges: pipes connecting the junctions &
Data: recorded pressure in each junction varying by time
Shift op. (A or L)
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State Space Model for Time-Varying Graph Signals

equations

xt = g(L,x¢t—1) + wWi—1 — state equation
yi = fr(L,x¢) + v¢ — observation equation
x +w +w
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Observation Model: Graph Filter

We consider a graph filter at each time ¢ for observation model

Graph filter: shift-and-sum over the graph

K
yt = Z hi LFxe = Hy(L)x:
k=0

Xt Loxt let L2xt
—> I L L
hot hi¢ haoy
+ - +

Goal: Learn hy; to have a simple evolution in the state.
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State Equation: Stochastic PDE over Graphs

Strict PDE in the state: H¢(L) might not exist

= Hence, we allow some uncertainty in the state equation
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State Equation: Stochastic PDE over Graphs

Strict PDE in the state: H¢(L) might not exist

= Hence, we allow some uncertainty in the state equation

dxy = —cLxidt + Sdj3,
B, € RF is a standard Wiener process (a.k.a Brownian motion)

S € RVXF js the dispersion matrix
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State Equation: Stochastic PDE over Graphs

Strict PDE in the state: H¢(L) might not exist

= Hence, we allow some uncertainty in the state equation

dxy = —cLxidt + Sdj3,
B, € RF is a standard Wiener process (a.k.a Brownian motion)

S € RVXF js the dispersion matrix

Goal: Learn S — has too many parameters

= We parameterize it by graph structure

S = Bdiag(a) — dx¢ = —cLxdt + Bdiag(o)dB,

B is the incidence matrix
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Problem Formulation

Continuous-discrete state space model:

dx¢ = —cLx:dt + Bdiag(a)dg,
v = He(L)x¢ + v
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Problem Formulation

Continuous-discrete state space model:

dx¢ = —cLx:dt + Bdiag(a)dg,
v = He(L)x¢ + v

initial state value: xg ~ N (pq, X0)

noise energy: E[vyv]] = 0?1
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Problem Formulation

Continuous-discrete state space model:

dx¢ = —cLx:dt + Bdiag(a)dg,
v = He(L)x¢ + v

initial state value: xg ~ N (pq, X0)

noise energy: E[vyv]] = 0?1

Inference problem:
= given: temporal observations y1,...,yr

= goal: estimate parameters o and hy;’s
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Problem Formulation

Continuous-discrete state space model:

{dxt = —cLxdt + Bdiag(a)dB,

v = He(L)x¢ + v

initial state value: xg ~ N (pq, X0)

noise energy: E[vyv]] = 0?1

Inference problem:
= given: temporal observations y1,...,yr

= goal: estimate parameters o and hy;’s

Approach:

Discretization of state
Recovering the state

Estimating model parameters
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Stepl: Discretization of Continuous State

Using the transition matrix of an LTI-SPDE:

X+ At = Lxt + q
with:

L = exp(—cAtL)

At
Q= / ech(Atfs)BdiagQ(a)BTech(Atfs)ds
0
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Stepl: Discretization of Continuous State

Using the transition matrix of an LTI-SPDE:

X+ At = Lxt + q
with:

L = exp(—cAtL)

At
Q :/ e=eL(A1=9) Biag? (a)BT e~ eL(At=2) 4
0
With first-order Taylor approximation:

L~I-cAtL
Q ~ AtBdiag?(a)BT
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Step2: Recovering the State

Kalman-Bucy filtering/smoothing

Given model parameters o and Hy: state recovery via Kalman filtering

= optimum Bayesian solution (recursive closed form — linear complexity in time)
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Step2: Recovering the State

Kalman-Bucy filtering/smoothing

Given model parameters o and H;y: state recovery via Kalman filtering

= optimum Bayesian solution (recursive closed form — linear complexity in time)

prediction step: correction step:
xi7t = Lxl71; K: =P 'H,"(HP!7'H, T 4+ 5%1)7!
P;~' = LP{_|L + Bdiag’(a)B"; xp = x{ '+ Ke(ye — Hex| 1)

Pl =PI - K,PI'K/;

K is the Kalman gain
(ye — Htxi_l) is the prediction error

P, is the covariance matrix of the state at time ¢
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Step3: Estimating Model Parameters

a maximum a priori approach

Having the state via Kalman filter — likelihood on the observation

= can be even computed recursively!

Li(o, ht) = Li—1(, hy) + %log St
+5(ye = Hixg TS (ye — Hex{ ™)

where: S; = HyPI™'H, T + 021
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Step3: Estimating Model Parameters

a maximum a priori approach

Having the state via Kalman filter — likelihood on the observation

= can be even computed recursively!

Li(o, ht) = Li—1(, hy) + %log St
+5(ye = Hixg TS (ye — Hex{ ™)

where: S; = HyPI™'H, T + 021

error matters more when confidence is high!
no lg-norm risk anymore — covariance-based norm replaced

gradient descent and inference is over!
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Experiments

Datasets:
= Synthetic data: based on presented state space model (200 nodes, 10000 samples)
= Weather data: NOAA (109 nodes, ~8500 samples)
= Traffic data: METR-LA (207 nodes, ~28000 samples)
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Experiments

Datasets:
= Synthetic data: based on presented state space model (200 nodes, 10000 samples)
= Weather data: NOAA (109 nodes, ~8500 samples)
= Traffic data: METR-LA (207 nodes, ~28000 samples)

Tasks:
= Interpolation: randomly removing data over nodes at each time

= Extrapolation: forecasting time series, using state equation
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Interpolation

data imputation

Table: Interpolation task performance for both synthetic and weather temperature dataset. The experiments are
performed based on different portions of unobserved data.

NMSE Synthetic ‘Weather Traffic

10% 20% 30% 10% 20% 30% 10% 20% 30%
LMS 0.40 0.46 0.46 0.42 0.43 0.49 0.41 0.45 0.48
StarGP 0.31 0.31 0.36 0.25 0.24 0.31 0.21 0.25 0.29
G-SPDE 0.12 0.14 0.16 0.13 0.14 0.17 | 0.16 0.15 0.27

"No-a 024 027 030 | 023 028 031 | 027 033 037

Fixed-a 0.24 0.26 0.29 0.22 0.26 0.29 0.24 0.27 0.36
Learn-S 0.23 0.20 0.20 0.21 0.21 0.27 0.19 0.22 0.34

4 Delft
TUDelft Gy



Extrapolation

forecasting
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Figure. Traffic forecasting performance in rNMSE for proposed models with different prediction horizons.
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Thanks for your attention!
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