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Multivariate Time Series over Networks

Financial networks

Brain recordings

Water networks

▶ Data have now a spatial dependency and a temporal dependency
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Graphs for Multivariate Time Series

▶ Graphs can be used to model multivariate time series
⇒ The structure is a graph
⇒ Time series are time-varying data assigned to the nodes

▶ Nodes: junctions/sources in the city V

▶ Edges: pipes connecting the junctions E

▶ Data: recorded pressure in each junction varying by time

⇒ xt over the graph G = {V, E} Shift op. (A or L)
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State Space Model for Time-Varying Graph Signals
equations

{
xt = g(L,xt−1) +wt−1 → state equation
yt = ft(L,xt) + vt → observation equation

g(L, ·) g(L, ·) . . . g(L, ·)

fti(·) fti(·) fti(·)

xT

+wTx0 +w1 +w2

+v1 +v2 +vT

y1 y2 yT

x1 x2
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Observation Model: Graph Filter

▶ We consider a graph filter at each time t for observation model

▶ Graph filter: shift-and-sum over the graph

yt =
K∑

k=0

hktL
kxt = Ht(L)xt

I L L

+ + +

xt L0xt L1xt L2xt

h0t h1t h2t

yt

▶ Goal: Learn hkt to have a simple evolution in the state.



6/14

State Equation: Stochastic PDE over Graphs

▶ Strict PDE in the state: Ht(L) might not exist
⇒ Hence, we allow some uncertainty in the state equation

dxt = −cLxtdt+ Sdβt

▶ βt ∈ RF is a standard Wiener process (a.k.a Brownian motion)

▶ S ∈ RN×F is the dispersion matrix

▶ Goal: Learn S → has too many parameters
⇒ We parameterize it by graph structure

S = Bdiag(α) −→ dxt = −cLxtdt+Bdiag(α)dβt

▶ B is the incidence matrix
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Problem Formulation

▶ Continuous-discrete state space model:{
dxt = −cLxtdt+Bdiag(α)dβt

yt = Ht(L)xt + vt

▶ initial state value: x0 ∼ N (µ0,Σ0)

▶ noise energy: E[vkv
⊤
k ] = σ2I

▶ Inference problem:
⇒ given: temporal observations y1, . . . ,yT

⇒ goal: estimate parameters α and hkt’s

▶ Approach:

1. Discretization of state
2. Recovering the state
3. Estimating model parameters
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Step1: Discretization of Continuous State

▶ Using the transition matrix of an LTI-SPDE:

xt+△t = L̃xt + qt

with:

qk ∼ N (0,Q)

L̃ = exp(−c△tL)

Q =

∫ △t

0
e−cL(△t−s)Bdiag2(α)B⊤e−cL(△t−s)ds

▶ With first-order Taylor approximation:

L̃ ≈ I− c△tL

Q ≈ △tBdiag2(α)B⊤
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Step2: Recovering the State
Kalman-Bucy filtering/smoothing

▶ Given model parameters α and Ht: state recovery via Kalman filtering
⇒ optimum Bayesian solution (recursive closed form → linear complexity in time)

prediction step:

xt−1
t = L̃xt−1

t−1;

Pt−1
t = L̃Pt−1

t−1L̃+Bdiag2(α)B⊤;

correction step:

Kt = Pt−1
t Ht

⊤(HtP
t−1
t Ht

⊤ + σ2I)−1

xt
t = xt−1

t +Kt(yt −Htx
t−1
t );

Pt
t = Pt−1

t −KtP
t−1
t K⊤

t ;

▶ Kt is the Kalman gain

▶ (yt −Htx
t−1
t ) is the prediction error

▶ Pt is the covariance matrix of the state at time t
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Step3: Estimating Model Parameters
a maximum a priori approach

▶ Having the state via Kalman filter → likelihood on the observation
⇒ can be even computed recursively!

Lt(α,ht) = Lt−1(α,ht) +
1
2
log |St|

+ 1
2
(yt −Htx

t−1
t )⊤S−1

t (yt −Htx
t−1
t )

where: St = HtP
t−1
t Ht

⊤ + σ2I

▶ error matters more when confidence is high!

▶ no l2-norm risk anymore → covariance-based norm replaced

▶ gradient descent and inference is over!
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Experiments

▶ Datasets:
⇒ Synthetic data: based on presented state space model (200 nodes, 10000 samples)
⇒ Weather data: NOAA (109 nodes, ∼8500 samples)
⇒ Traffic data: METR-LA (207 nodes, ∼28000 samples)

▶ Tasks:
⇒ Interpolation: randomly removing data over nodes at each time
⇒ Extrapolation: forecasting time series, using state equation
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Interpolation
data imputation

Table: Interpolation task performance for both synthetic and weather temperature dataset. The experiments are
performed based on different portions of unobserved data.

rNMSE
Synthetic Weather Traffic

10% 20% 30% 10% 20% 30% 10% 20% 30%
LMS 0.40 0.46 0.46 0.42 0.43 0.49 0.41 0.45 0.48
StarGP 0.31 0.31 0.36 0.25 0.24 0.31 0.21 0.25 0.29
G-SPDE 0.12 0.14 0.16 0.13 0.14 0.17 0.16 0.15 0.27
No-α 0.24 0.27 0.30 0.23 0.28 0.31 0.27 0.33 0.37
Fixed-α 0.24 0.26 0.29 0.22 0.26 0.29 0.24 0.27 0.36
Learn-S 0.23 0.20 0.20 0.21 0.21 0.27 0.19 0.22 0.34
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Extrapolation
forecasting

Figure. Traffic forecasting performance in rNMSE for proposed models with different prediction horizons.
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Thanks for your attention!


