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Introduction

• Physical Layer Security (PLS) can ensure wireless communication
security when cryptographic methods fail to provide low latency
and scalability.

• Directional modulation (DM) is a PLS approach, that modulates
the antenna transmissions so that the communication information
is distorted in all directions except in the directions of the
legitimate receivers .

• Thus, DM makes it difficult for an eavesdropper who is located in
a different direction than the legitimate users to intercept the
communication signals it receives.

• DM can be achieved by appropriately designing the antenna
weights, or via symbol level precoding, that creates interference
between the transmitted data symbols.
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Time-Modulated Arrays (TMA)

• Recently, time-modulated arrays (TMAs) were proposed to
construct the DM transmitter2.

• In TMAs the antennas connect and disconnect to the RF chain in
a periodic manner. The connect/disconnect patterns can be
designed so that symbols are received intact along a desirable
spatial direction and scrambled in all other directions

• When an OFDM transmit waveform is used, a periodic
connect/disconnect pattern over multiple OFDM symbols gives
rise to harmonics around the carrier frequency → intercarrier
interference (scrambling of data symbols)

• TMA is a hardware-based approach and does not require location
info on the eavesdroppers or the complex design on the
transmitted signals. Its drawback is reduced energy efficiency.

2Ding et al. 2019.
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Our Contribution

• Previous studies on the TMA DM technique have mainly focused
on hardware implementation, energy efficiency improvement,
ON-OFF pattern design, and applications, but have not looked
into how secure the TMA DM system is.4

• In this paper, we investigate the level of security provided by the
TMA achieved scrambling.

• We show for the first time that

- Unless certain action is taken, the TMA OFDM system is actually
not secure enough.

- An eavesdropper could use an Independent Component Analysis
(ICA)-based approach and exploit prior knowledge of TMA to defy
the TMA scrambling.

• We also propose a novel TMA implementation mechanism to
make the eavesdropper’s job harder.

4Nooraiepour et al. 2022; Purushothama et al. 2023; Li et al. 2022; Xu and
Petropulu 2023.
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System Model

• Consider a TMA using a uniform linear array with N elements.

• The array transmits an OFDM waveform with K subcarriers
spaced by fs.
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System Model

• Let sk be the digitally modulated data symbol assigned to the
k-th subcarrier. The OFDM symbol equals

x(t) =
1√
K

K∑
l=1

ske
j2π[f0+(l−1)fs]t. (1)

• The OFDM symbol radiated towards direction θ ∈ [0, π] can be
expressed as

y(t, θ) =
1√
N

N∑
n=1

x(t)wnUn(t)e
j(n−1)π cos θ, (2)

• We set wn = e−j(n−1)π cos θ0 to focus the beam towards θ0.
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System Model

• Let the normalized switch ON time instant and the normalized
ON time duration be denoted by τ on and ∆τn, respectively, we can
expand Un(t) in the form of Fourier series as

Un(t) =

∞∑
−∞

amne
j2mπfst, (3)

where
amn = ∆τn sinc(mπ∆τn)e

−jmπ(2τon+∆τn). (4)

• By combining the above equations, we rewrite y(t, θ) as

y(t, θ) =
1√
NK

K∑
l=1

ske
j2π[f0+(l−1)fs]t

∞∑
m=−∞

ej2mπfstVm, (5)

where

Vm =

N∑
n=1

amne
j(n−1)π(cos θ−cos θ0). (6)
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System Model

• In order to implement DM functionality, τ on and ∆τn are chosen
to satisfy

Vm ̸=0(τ
o
n,∆τn, θ = θ0) = 0,

Vm=0(τ
o
n,∆τn, θ = θ0) ̸= 0.

(7)

• This can be achieved by the following three conditions:

- (C1) ∆τn, τ
o
n ∈ {h−1

N }h=1,2,...,N (note that the subscript n is not
necessarily equal to h)

- (C2) τop ̸= τoq ,∆τp = ∆τq = ∆τ for p ̸= q

- (C3)
∑N

n=1 ∆τn ̸= 0

• For simplicity, we skip noise and assume that same power is
assigned to each antenna in each subcarrier.
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The Proposed Formulation at the Eavesdropper

• After OFDM demodulation, the received data symbol on the i-th
subcarrier can be expressed as yi(θ) = 1/

√
NK

∑K
l=1 skVi−l.

• Based on the signals received on all subcarriers, y, the
eavesdropper can formulate the problem

y = V s, (8)

where V ∈ CK×K is a Toeplitz matrix as follows

V =
1√
NK


V0 V−1 · · · V−(K−2) V−(K−1)

V1 V0 · · · V−(K−3) V−(K−2)
...

...
. . .

...
...

VK−2 VK−3 · · · V0 V−1

VK−1 VK−2 · · · V1 V0

 , (9)

and s = [s1, s2, · · · , sK ]T .
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The Proposed Formulation at the Eavesdropper

• Due to (C1)-(C3), along θ0, V is diagonal and the received signal
equals y(θ0) = ∆τ

√
N/Ks.

• In all other directions, the signal of each subcarrier contains the
harmonic signals from all other subcarriers, which gives rise to
symbol scrambling.

• In y = V s, the elements of s are statistically independent and
non-Gaussian. Although V is unknown to the eavesdropper, s can
be estimated from y with ambiguities via an ICA approach.

• ICA tries to find W such that Wy is maximally non-Gaussian.

• In this work, we adopt negentropy to measure non-Gaussianity
and implement FastICA to find W .

14 / 30



The Proposed Formulation at the Eavesdropper

• Due to (C1)-(C3), along θ0, V is diagonal and the received signal
equals y(θ0) = ∆τ

√
N/Ks.

• In all other directions, the signal of each subcarrier contains the
harmonic signals from all other subcarriers, which gives rise to
symbol scrambling.

• In y = V s, the elements of s are statistically independent and
non-Gaussian. Although V is unknown to the eavesdropper, s can
be estimated from y with ambiguities via an ICA approach.

• ICA tries to find W such that Wy is maximally non-Gaussian.

• In this work, we adopt negentropy to measure non-Gaussianity
and implement FastICA to find W .

14 / 30



The Proposed Formulation at the Eavesdropper

• Due to (C1)-(C3), along θ0, V is diagonal and the received signal
equals y(θ0) = ∆τ

√
N/Ks.

• In all other directions, the signal of each subcarrier contains the
harmonic signals from all other subcarriers, which gives rise to
symbol scrambling.

• In y = V s, the elements of s are statistically independent and
non-Gaussian. Although V is unknown to the eavesdropper, s can
be estimated from y with ambiguities via an ICA approach.

• ICA tries to find W such that Wy is maximally non-Gaussian.

• In this work, we adopt negentropy to measure non-Gaussianity
and implement FastICA5 to find W .

5Hyvärinen 1999.
14 / 30



The Proposed Formulation at the Eavesdropper

• Due to (C1)-(C3), along θ0, V is diagonal and the received signal
equals y(θ0) = ∆τ

√
N/Ks.

• In all other directions, the signal of each subcarrier contains the
harmonic signals from all other subcarriers, which gives rise to
symbol scrambling.

• In y = V s, the elements of s are statistically independent and
non-Gaussian. Although V is unknown to the eavesdropper, s can
be estimated from y with ambiguities via an ICA approach.

• ICA tries to find W such that Wy is maximally non-Gaussian.

• In this work, we adopt negentropy to measure non-Gaussianity
and implement FastICA5 to find W .

5Hyvärinen 1999.
14 / 30



The Proposed Formulation at the Eavesdropper

• Due to (C1)-(C3), along θ0, V is diagonal and the received signal
equals y(θ0) = ∆τ

√
N/Ks.

• In all other directions, the signal of each subcarrier contains the
harmonic signals from all other subcarriers, which gives rise to
symbol scrambling.

• In y = V s, the elements of s are statistically independent and
non-Gaussian. Although V is unknown to the eavesdropper, s can
be estimated from y with ambiguities via an ICA approach.

• ICA tries to find W such that Wy is maximally non-Gaussian.

• In this work, we adopt negentropy to measure non-Gaussianity
and implement FastICA5 to find W .

5Hyvärinen 1999.
14 / 30



Addressing Scaling and Permutation Ambiguities in W

• The inverse of W , produced by ICA, may not be equal to the
actual mixing matrix, V , since there exist scaling and
permutation ambiguities in W . Those ambiguities would prevent
the correct recovery of source symbols.

• Assumptions: The eavesdropper knows
• The OFDM specifics of the transmitted signals, e.g., the number of

subcarriers, K, and spacing fs
• The data modulation scheme
• The rules (C1)-(C3) which the transmitter used to select the TMA

parameters.

• The scaling ambiguity can be divided into amplitude and phase
ambiguity. Knowledge of the transmit constellation can be used
to resolve the amplitude scaling ambiguity.
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Resolving the Permutation Ambiguity

• To solve the permutation ambiguity we leverage the fact that V
is a Toeplitz matrix.

• Let F
△
= W−1.

In the absence of ambiguities, it would hold that F = V and thus
F would have a Toeplitz structure.

• We reorder F , checking whether the reordering creates a Toeplitz
matrix.

- There are K! possible orderings
- Considering the fact that the main diagonal elements can
determine the Toeplitz structure of F , we focus on the main
diagonal elements

- We use standard deviation, σ, to measure the similarity of the main
diagonal elements
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Resolving the Permutation Ambiguity

• The complexity of the process is O(K3).

17 / 30



Resolving the Scaling Phase Ambiguity

• Regarding the phase scaling ambiguity, we exploit the
knowledge of the Toeplitz structure first.

- For M -PSK modulation, there will be MK phase possibilities for F
- The Toeplitz constraint can reduce it to M since the phases of
diagonal elements of F must be the same, and each source signal
can have up to M phase transformations. Denote these
possibilities as F 1,F 2, ...,FM .

• Let ϕ = cos θe − cos θ0. It holds that

V0 = ∆τ

N∑
n=1

ej(n−1)πϕ = ∆τ
sin(N2 πϕ)

sin(12πϕ)
ej

(N−1)
2

πϕ. (10)
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Resolving the Scaling Phase Ambiguity

• Then we obtain

γ
△
=

Re(V0)

Im(V0)
=

1

tan N−1
2 πϕ

=
Re(V(1, 1))

Im(V(1, 1))
, (11)

• To resolve the remaining phase ambiguity, we check whether there
exist solutions of N , ∆τ , {τ on}n=1,2,...,N according with (C1)-(C3)
and φ that correspond to exactly one of the elements in
{F u}u=1,2,...,M .

• The steps of resolving the phase ambiguity are exhibited in the
following algorithm.
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Resolving the Scaling Phase Ambiguity
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Defending the TMA Scrambling

• Since the above ICA can work only in stationary environments and
necessitates long data for estimating the required higher-order
statistics, we can disturb the applicability of ICA by changing the
mixing matrix of TMA over time.

• This can be done by selecting randomly {τ on}n=1,2,...,N in each
OFDM symbol period according to τ on ∈ {h−1

N }h=1,2,...,N and
τ op ̸= τ oq .

• Also, this mechanism is able to maintain the DM functionality as
it still satisfies the above scrambling scheme.
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Numerical Results

• We simulated a TMA OFDM scenario with N = 7 antennas,
K = 16 subcarriers, and BPSK data modulation. The
eavesdropper collects H = 1e5 OFDM symbols.

• We conducted 6 experiments: in each one, the legitimate user is
at θ0, and the eavesdropper at θe.

Table: Average BER of the TMA system

No. θ0(
◦) θe(

◦) φ BER1 BER2 BER3

1 50 90 -0.6428 0.3080 0 0.4504
2 60 30 0.3660 0.2640 0 0.5218
3 80 40 0.5924 0.4474 0 0.5004

4 30 70 / 0.5487 0 0.4168
5 40 90 / 0.3754 0 0.4824
6 50 130 / 0.2744 0 0.4789
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Numerical Results

• Next, we set θ0 = 60◦, θe = 30◦, N = 7, ∆τ = 1/N ,
{τ on}n=1,2,...,N = (n− 1)/N , φ is assumed to be known.
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Conclusions

• We have shown, for the first time, that the data scrambling of
TMA OFDM DM systems can be defied by an eavesdropper.

• We have shown that based on the scrambled symbols, the
eavesdropper can formulate a blind source separation problem, and
introduced a novel ICA-based scheme that can infer the mixing
matrix with no ambiguities and recover the transmitted symbols.

• We have also proposed a simple TMA implementation mechanism
to make the job of the eavesdropper harder.

• Numerical results have demonstrated the effectiveness and
efficiency of proposed defying and defending approaches.
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• Numerical results have demonstrated the effectiveness and
efficiency of proposed defying and defending approaches.
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