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What Is a Graph Signal?

m Graphs provide efficient representation tools for data in a variety of applications in signal
processing, machine learning, finance, etc [Dong, Thanou, Rabbat, et al. 2019; Marques
et al. 2020].

m A weighted graph is denoted with G = {V,&, W} (V vertex set, £ edge set, and W
(weighted) adjacency matrix).

m For an undirected graph (symmetric W), one may represent the graph with edge weights
vector w. There are equivalent representations via adjacency/Laplacian operator:

W = A(w), L = Diag(W1) — W = L(w) [Kumar et al. 2020].

m A (time-varying) graph signal x; = f(V;t) is a time series with spatio-temporal

(vertex/time domain) correlations.
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How to Represent Data Matrices with Graphs?

m Suppose, we are given N measurements of a (time-varying) graph signal x; € RY as
X =[x...,x7] € RV*T,

m Each row of X is a time-series (time samples) corresponding to a vertex of the graph.

m An example: x; is the prices of IV stocks in a financial market and T is the number of
daily measurements.

m A weighted undirected graph can model similarity (correlations) between elements (the
higher W; ;, the more similar (correlated) the time series at vertices ¢ and j will be).
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Graph Learning

Problem

m Given complete data, the goal is to find a graph structure that models inter-connected
similarities/dependencies.

=W N =

Graph learning given the (complete) data

Related Works

m Algorithms that use probabilistic methods via a Gaussian Markov Random Field (GMRF)
model, e.g., [Egilmez et al. 2017; Kumar et al. 2020; Lake & Tenenbaum 2010; Zhao

et al. 2019], or deterministic regularization criteria such as smoothness [Kalofolias 2016] or
stationarity [Segarra et al. 2016].
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Graph Signal Recovery

Problem

m Given the underlying graphical model, the goal is to recover (impute) the signal.

N

Recovery of the data given the underlying graph structure

Related Works

m Incorporating properties such as least total-variation [Chen et al. 2015], stationarity
[Perraudin & Vandergheynst 2017], spatio-temporal smoothness [Qiu et al. 2017], sparsity
[Safavi et al. 2018] of the signal in a graph representation domain for imputation.
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Joint Graph Learning and Signal Recovery

Problem

m The goal is to simultaneously impute the signal and infer the the underlying graphical
models.

N N

Joint signal recovery and graph learning

Related Works

Stochastic approaches to joint undirected graph learning and signal denoising using smoothness
[Dong, Thanou, Frossard, et al. 2016] (GL-SigRep) and long-short term characteristics [Liu

et al. 2020] (GL-LRSS) Or deterministic approaches for joint directed graph learning and signal
recovery via Vector Autoregressive (VAR) model [loannidis et al. 2019] (JISG)
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Proposed M d

Assumptions:

m Assume a connected undirected graph that models similarity in temporal variations of the
signal elements. The larger W; ;, the more similar the i-th and j-th components of the
signal vary in time.

m The observations of the original signal have missing entries
Goal:
m Graph learning from missing data or semi-blind recovery of graph signal (no graph prior)

m Learn the graph and recover (impute) the signal in a jointly fashion.

=W N

Joint signal recovery and graph learning (the investigated problem)
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Proposed M Applications

Applications:

m Our model can be applied for graph signals (time-series) where the temporal
evolution/variation is of importance %R .

Examples:

m Finance: Modelling the change (rate of return) in the stock prices or market indices.
Missing entries occur due to trading halts, suspensions, holidays, etc.

m Healthcare: Monitoring changes in vital signs such as heart rate, blood pressure, etc..
Missing values due to sensor failure or noise. .

[ 728 28

m Environmental Monitoring: Modelling variations in the pollut;on Ievels temperature,
etc. Missing values due to sensor failure or noise. e

m Security and Surveillance: Monitoring changes in activityspatterns, such as motion
detection, sound level, etc. Missing values due to sensor fafilure&_ or noise.
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Proposed Method: Intuition

Why spatio-temporal smoothness?
m Assume a first order VAR model with (spatially) non-white innovations with the graph
Laplacian £(w) as the precision matrix

X =X1+€ 1<t<T (XOZO)
1 1
pe(en) o (det” L)) exp (el £lwer )
m Assume we have noisy (AWGN) and missing observations of the original signal

Y = My @ (Xt + I'It) n; ~ N(O,O'Tzl:[)

m The MAP estimation of the signal and graph (X and w) with some sparsity-promoting
graph prior (p(w) exp(ffy lwll,) gives:

X*, w* =argmin — ||Y M © X||% + Sr(X, w) — T'log det” £(w) + 7 ||w]|,
X.w>0 0%

m The term Sy (X, w) = Zle(xt —x;_1) Lw(x; —x;_1) is called spatio-temporal
smoothness.
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Proposed Method: Intuition

Why spatio-temporal smoothness?
m Assume i.i.d. random samples of a zero-mean GMRF with the graph Laplacian £(w) as
the precision matrix

x¢ ~ N (0,L(w)1), x¢—1 ~ N (0, L(w)T)
m The difference z; = x; — x;_1 is still a zero-mean GMRF
z; ~ N (0,2L(w)")

m Then for T — oo, simple (spatial) graph smoothness S(X,w) = Y, x/ £(w)x; would be
only a factor of the spatio-temporal smoothness St (X, w)

—S X, w) Zx;rﬁ w)x; ~ Tr (L(w)E[x¢x; |) = Tr (L(w)L(w)T)
= %Tr (L(w)2L(w)T) = Tr (L(W)E[z,2, |) ~ %% ;zz—ﬁ(w)zt = %ST(X,W)

Conclusion

The spatio-temporal smoothness assumption works for both i.i.d. and time-dependent signals
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Proposed Method: Problem Formulation

Problem Formulation

X*, w* =argmin f(X,w)
X,w>0

FX,w) 2|Y — Mo X7 + aSr(X,w) — BR(w) + 7 | wl|,

B [Y-MoO XH%: Fidelity measure (similarity to the observation)
m M: The missing/sampling mask
m Y: Observations of the original signal: y: =m; ©x: or Y =M © X

= S7(X,w): Spatio-temporal smoothness measure: Sp (X, w) = Tr (L(w)A(X)A(X) ")

m D: The (first order) difference matrix: D = ZtT:I e_1e]
m A(X): The (first order) difference signal with columns A¢(X) := x; — x¢—1
(A(X) := X — DX)

m R(w): Regularization term to enforce connected graph structure:
R(w) = —logdet(L(w) + J), J=(1/N)11"

m ||w||,: Sparsity promoting term (need to apply threshold to be effective)
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Proposed Method: Solution

Optimization Algorithm:
m We use block Majorization-Minimization (MM) [Sun et al. 2017] or the Block Successive
Upperbound Minimization (BSUM) [Razaviyayn et al. 2013] to solve the problem.
m We have two (block) variables X and w — we have two update steps.

m In each update step fix one (block) variable, and minimize a majorizer over the other
(block) variable.

F(@e) < flae)

Tt Tip1  Teg2
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Solution: Signal (X) Update

X-subproblem

X* =argmin fx(X)
X

KX)=Tr (Y -MoX)(Y-MoX)") +aTr (L(w)AX)A(X)") + const.
X-update steps:
m Vectorization: Restate the fx(X) in vectorized form
fx(X) = vec(X) T Gvec(X) — 2vec(X) b + const
G = Diag(vec(M)) +ocH (I7 ® L(w))H, H=1Iyy -D' @Iy
m Majorization: Find a majorizer for less complex solution (compared to inverting G)
fR(X:Xo) = fx(X) + vee(X —Xo) (0Iy7 — G)vec(X —Xo) > fx(X)

A sufficient condition for this upperbound to hold is if > 1 4+ 4« ||L(W)] > |G|
m Minimization: Minimize f(X;Xg) for X, = X7 to obtain X (+1)

XU+ — arg}r{nin f)%(x;x(j)) - XU _ Leixf (X(J))
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Solution: Graph (w) Update

w-subproblem

w* = argmin fy (W)
w

Fur(W) = TrH(L(W)K) — logdet(C(w) + F), K= % (@AX)AX)T + /2Heg)

w-update steps:
m First Majorization: Linear approximation of the concave function logdet((£(w) + J)™!)

—logdet(L£(w) + J) <Tr (Fo(GDiag(w)G ")) — logdet(L(wo) +J) — N

Here Fo = L(wo) +J, G = [E, 1], w = [w' 1/N]" and wy is a fixed (previous) point
Also E=[€,...,&nn_1)/2] € RVXN(N=1)/2 consists of vectors &, for

k=i—j+ %(2N —7), © > j, each of which has a +1 at the j-th position, a —1 at the
i-th position, and zeros elsewhere.
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Solution: Graph (w) Update

w-update steps:
m Double Majorization!: Use an inequality from linear algebra

Tr (Fo(GDiag(w)G")™") < Tr (F; ' GDiag(W{? © w)G ")
= (wow,LNFyh)) + Tr (Fg'J)
m Final Majorization!l: Add }°, 7q;wo?h(w; /wo;) with h(z) =z + 1 —2>0forz >0
fw(W) < f3(w;wo) 2 T(qO W, wo wo + (wo +1/7) 0w — 2)+
(w,r) + Tr ((L(wo) +J)7'J) — logdet(L(wo) + J) — N

Here r = £*(K), g = L*((Lwo +J)™ 1), and 7 > 0 is a constant.
= Minimization: Minimize f3(w;w)) for wo = w’ to obtain w1

wUFD = argmin 3 (w; w?))

— w0\ /(w0 q+ ) o (rw) © q +1).
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Numerical Results (Synthetic Data)

Graph Learning
m Evaluating our model for graph Laplacian L = £(w) estimation from synthetic data.
m The F-score and Relative Error are used as performance metrics.
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Numerical Results (Synthetic Data)

Signal Recovery
m Evaluating our model for graph signal X recovery from synthetic data.
m The SNR and NMSE are used as performance metrics.

NMSE = Z”X| il : SNRzQOlogw(M).
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Numerical Results (Real Data)

Signal Recovery
m Evaluating our model for graph signal X recovery from real (US temperature) data.
m The SNR and NMSE are used as performance metrics.
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Numerical Results (Real Data)

Signal Recovery
m Evaluating our model for graph signal X recovery from real (S&P500 stock data) data.
m The SNR and NMSE are used as performance metrics.
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Thanks!

Thanks for listening. For more information visit

www.danielpalomar.com
github.com/convexfi
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