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Diarization

e Methods:
o Clustering-based
o End-to-end Neural Diarization (EEND)
o Hybrid (combination of the previous ones)

e Currently dominated by EEND

e EEND Problems:

o Trained on huge amount of simulated data
o May not even model speaker information implicitly
o Problems with determining the correct # of speakers



Why Clustering-based VBx?

Built on top of a pre-trained SID embedding extractor (ResNet)

Implicit speaker-discriminative power in the embeddings

Surpasses EEND models in estimating # of speakers

Ability to use large real SID datasets to train the pipeline (real diarization data
are scarce)

Relevant baseline used in many research works till this date

e Still competitive on 16 kHz data



VBx Overview
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VBx - Basics

e Bayesian HMM-based model p(z: = s|zi—1 =§') = (1 — P)7s + (s =) P,
e Two-covariance PLDA speaker models (HMM emissions):
o p(%i) = N (% s, Bw); p(ths) = N (ths; m, Xp)
Transformed input x-vectors (std. normal within-class, diagonal across-class)

A

O
o X = (X — ILm)E. EbE = EWE@ Ploop
o Standard normal prior on speaker variable

p(ms) = N (ms; 0, ®)
p(xt|ze = s) = N(x¢; Vys, I)

V = (I)%ams = VYSap(YS) = N(YS§Oa I)




VBXx - Inference
PLDA HMM  PRIOR

o p(X,Z,Y) = p(X|Z,Y)p(@Z)p(Y) =[] p (xilz) [ p (el [ ] o (35)

e Intractable posterior: p(Z|X) = [p(Z,Y|X)dY
e Let's approximate: p(Z, Y|X) ~ q(Z,Y) = q(Z)q(Y)
By maximizing:

L(q(Y,Z)) = FAEyx,z) Inp(X|Y, Z)]+ F5Eyy) [ln I;Ei;] +Eq(z) lln 2%]

e We maximize ¢(Y) given ¢(Z) fixed and vice-versa iteratively

e [F4 counteracts the independence assumption of HMM
e The higher the Fg, the more speakers are dropped



Gridsearch

e Hyperparameters need to be optimized jointly

e Gridsearch requires manual specification of search space
o Fa=0.2, Fb=6 - DIHARD Il
o Fa=0.4, Fb=64 - AMI

e Precision of found parameters is limited

e Prior knowledge is necessary to find optimal parameters



Automatic Search

e Advantages:
o User can treat VBx as a blackbox and optimize the hyperparameters for a new
dataset
o Joint optimization of the VBx pipeline (including ResNet)
e Procedure:
o Hyperparameters are optimized while the rest of the pipeline is fixed
o PLDA s fine tuned with fixed hyperparameters to potentially further boost the
model performance
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Training & Evaluation Setup

e \We used Adam optimizer with different learning rates for Fa, Fb and loop
probability
e Datasets:
o CALLHOME

o DIHARD II
o AMI

e Metrics: Diarization Error Rate (DER)
e Selected the best-performing model based on the lowest validation DER
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BCE loss

o v = (b .7 € (0,1)° denotes VBx predictions

l.s)T € {0,1}5 denotes ground truth labels
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Overconfidence & BCE

e VBx produces overconfident posteriors
e BCE is trying to fix overconfident error during later stages of training

e We tried BCE+calib: Hgp,c = Hg(softmaz(r -~%),1;) with trainable or fixed
scaling constant
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EDE loss

e BCE does not correlate with DER well as it tries to fix over-confidence errors

instead of diarization-related errors
e \We propose Expected Detection Error (EDE) loss:
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EDE loss

BCE does not correlate with DER well as it tries to fix over-confidence errors

instead of diarization-related errors
We propose Expected Detection Error (EDE) loss:
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VBx - HMM to GMM

e Another important hyperparameter: loop probability
e Preliminary experiments showed the automatic search pushed itto 0
e [Effectively degrades HMM to GMM

=0

p(ze =slze_1=8)=(1—-P)ns +6(s=5s")P, =

e Almost no effect on the performance
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Optimization Results

e HMM VBx baseline (GS)
e GMM VBx baseline (GS)
e DVBX hyper parameters trained

e DVBx matches the baseline
performance, which is the best
we can do

Data System T Fn Fg DER
HMM VBx [2] 700 020 6.00 18.55
GMM VBx 700 020 5.00 18.93
DH
HMM VBx [2] 7.00 040 17.00 13.53
GMM VBx 7.00 030 13.00 13.63
CH
HMM VBx [2] 7.00 040 64.00 20.84
GMM VBx 7.00 0.50 63.00 21.49

AMI
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Optimization Results

e HMM VBx baseline (GS)
e GMM VBx baseline (GS)
e DVBX hyper parameters trained

e DVBx matches the baseline
performance, which is the best
we can do

Data System T Fn Fg DER
DH  pvBx - BCE 200 025 438 1898
DVBx - BCE+calib. 12.88 043 10.14 18.84
DVBx - EDE 962 033 964 18.76
CH
DVBx - BCE 097 008 139 1353
DVBx - BCE+calib. 1.93 051 11.16 14.52
DVBx - EDE 1240 026 947 1348
AMI ~ LBy - BCE 1235 0.12 889 21.06
DVBx - BCE+calib. 15.10 021 1390 21.72
DVBx - EDE 348 025 2531 2091
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Optimization Results

e HMM VBx baseline (GS)
e GMM VBx baseline (GS)
e DVBX hyper parameters trained

e DVBx matches the baseline
performance, which is the best
we can do

Data System T Fn Fg DER
HMM VBx [2] 700 020 600 18.55
GMM VBx 700 020 500 18.93

PH “pvex -BCE 290 025 438 18.98
DVBx - BCE+calib. 12.88 043 10.14 18.84
DVBx - EDE 9062 033 964 1876
HMM VBx [2] 700 040 17.00 13.53
GMM VBx 700 030 1300 13.63

CH  Dvex-BCE 097 008 139 13.53
DVBx - BCE+calib. 193 051 1116 14.52
DVBx - EDE 1240 026 947 13.48
HMM VBx [2] 700 040 6400 20.84
GMM VBx 700 050 63.00 2149

AML " 1vBx - BCE 1235 012 889 21.06
DVBx - BCE+calib. 15.10 021 1390 21.72
DVBx - EDE 348 025 2531 2091
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PLDA Fine Tuning Results

PLDA FT further improves the
model performance (substantially
on AMI suggesting more data is
needed)

System DH CH AMI
a) GMM VBx 18.93 13.63 21.49
b) DVBX trained Fa, F'p 18.76 13.48 20.91
c) b) + PLDA FT 18.66 13.38 18.99
d) a) + PLDA FT 18.93 13.63 18.88
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Conclusion

e Proposed a new technique for automatic hyperparameter finding without the
requirement of prior knowledge

e Proposed a new loss that better correlates with DER metric

e Showed that we can further improve VBx performance by discriminative
PLDA fine tuning

e Available on GitHub:
o https://github.com/BUTSpeechFIT/DVBx



https://github.com/BUTSpeechFIT/DVBx
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VBx - Speaker Models

o ¢(Y)=]]c @) =N (yslas, L")

e The higher the F, the closer spk. models are to the standard normal prior
e The opposite holds for F'4
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VBx - Basics

e Bayesian HMM-based model p(z: = s|zt—1 =5s") = (1 — P)ms +6(s = s') P,
e PLDA speaker models (HMM emissions):

o Transformed input x-vectors (std. normal within-class, diagonal across-class)
o Standard normal prior on speaker means P,
oop
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VBx - Basics

e Bayesian HMM-based model p(z: = s|zt—1 =5s") = (1 — P)ms +6(s = s') P,
e PLDA speaker models (HMM emissions):

o Transformed input x-vectors (std. normal within-class, diagonal across-class)
o Standard normal prior on speaker means P,
oop

A

X = (X - ImE S,E = S, E®
p(xt|zt = 5) = N(x¢; Vys, I)

V=&, m, = Vy,,plys) = N(ys;0,1)
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VBXx - Hyper Parameters

A(t, s)B(t, s)
p(X)

e Weonlyneed vis=q(z=s)=

where  Inp(x|s) =F4]...]
e |.e. F'4 also scales the distribution of the embeddings

instead of ¢(Z),

e \We also trained loop probability but it was being pushed to 0 by the training
itself, thus we opted for GMM instead of HMM

p(ze =s|lze_1=8)=(1—-P)ms + (s =5")P, 20
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VBXx - PLDA Fine Tuning Results

e Recall, we re-parametrized the PLDA model:
© X =(X-1mEIZ,E = T, E®
e We train the transformation matrix E and between-class covariance matrix in
the transformed space ®
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