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e Modern communication networks have evolved massively with the use of intelligent systems
and smart devices — 5G, WiFi 6

Fig. 1: Generated by OpenAl’'s ChatGPT DALL -E, Next Generation Communication Systems

e Autonomous systems can solve complexity and scalability issues in large-scale
communication systems: 6G, WiFi 7

e An autonomous communication system is one which makes decisions without human
intrusion
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e Making decision in communication routing involves solving large-scale constrained network

optimization problems.

Heuristic methods can solve such challenging problems but fail to adapt and generalize
beyond a range of operating conditions
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Fig. 2: (a) Random Network (b) Interoute Topology (c) Missouri Topology

e Artificial Intelligence (Al) can learn efficient autonomous communications networks by
leveraging on data — Machine learning algorithms
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e We consider a communication network with N nodes and K flows represented as a graph %=(v,e)

e The performance function represents the aggregate amount of information generated at all nodes
over all flows, .
= Z Z log (a t

kek i€V

e Considering the aggregate utility and necessary constraints, the optimization can be expressed as

max ZZlog (% iaf(t))

{af OO jex ey

st Y k) +af(t) < Y k), Ve VieV, ----- Routing Constraint
FEN; JEN;
> k() < Oy, V(i) €E,  ----- Capacity Constraint
keK
ar(t) > Af(t), Vke K,VieV ----- Minimum Constraint
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Fig. 3: Example communication network

Fig. 4: Network state with respect to time
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At any time ¢, conventional formulation requires routing decisions to be recalculated for the given
network state C, .

= Learning and deploying such a policy becomes infeasible to deploy in real-time.

e Solution is to parameterize the resource allocation policy, replacing p(C;) with pP(Cs; 9).

e Parameterization helps in generalization and scaling to large scale networks, learn and solve
problems offline.

Unparameterized Formulation Parameterized Formulation
max U<l§f(ct,p(ct))> P* = max u(i T_lf(Ct,p(Ct;qﬁ)))
{pCOY T ¢ T
> 1 T-1
( Zf(ct Ct))) st g(; > f(ct,p(ct;qs)))z 0

e We utilize a Graph Neural Network (GNN) architecture to parameterize the network routing policy

State-Augmented Information Routing in Communication Systems with Graph Neural Networks - ICASSP 2024




Pel | | | Learning in the Dual Domain

UNIVERSITY 0f PENNSYLVANIA

A. Dual-Descent using Lagrangian Dual

e We consider a set of non-negative dual variables u corresponding to the constraint g.

e The Lagrangian can now be written as,

L) = UG SH(C, p<ct;¢>>> g (% Zf(Ct,pmt;«p)))

e Now the objective is to maximize the Lagrangian over ¢ while minimizing over u,

L =minmax L(¢,u)

p>0 Ged

Cons: Primal-Dual suffers from slow convergence
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B. Method of Multipliers (MoM) using Augmented Lagrangian Dual

e Method of Multipliers handles more general framework suitable for real-time scenarios.

e We introduce an auxiliary variable z to convert inequality constraints to equality constraints.

)

La(@yp) = max Lo(¢, 1, 2) | —— Lo p) =maxLo(dyp) | —— | Li(p) = minLa(4, )

e The augmented Lagrangian can now be written as,

Lo(¢yp,2) = ( cht, (C; ¢) > {( cht, (C; ¢) ) }

e 3 step optimization including the penalty method

2
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e The primal model parameters ¢ and the dual variable ¢ are updated iteratively

e Letm be the iteration index and 7|, be iteration duration between consecutive updates

(m+1)T—1 1 (m+1)Tp—1 p 1 (m+1)Tp—1 2
O = arg?ﬁé ( t;ﬂ) f(Cy,p(Cy; 0 )) { (?0 t_EmTO f(Ctap(Ct;¢))> —Z} + 5 ”T{g(fo t_ZmTO f(Ctvp(Ct;qS))) —Z} }
1 (m+1)Tp—1 +
[m —m—+1 1 prt = [um - p’”g<fo >, f(Ct,p(Ct;%)))] -
t=mT0

e Constraint slacks are the gradient of the augmented Lagrangian with respect to the dual
variables.
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e We use both the network state C,and dual variables u as input to the network routing policy

e \We use a separate parameterization 0 for the state-augmented policy as p(C;, u; )

Conventional Parameterization State-Augmented Parameterization

C —>[ pP(Ci; 9) }—V Pt [ p(Cy, p1;0) }—’ Pt
" |
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e The revised augmented Lagrangian with the new parameterization can now be expressed as

2

£.(0) =U<Ti > f<ct7p<ct,p;0>>) +,;{g<TL > f<ct,p<ct,u;o>>) —z} 2

0 v—kTo 0 v—kTo

#T{g(%@ Z_ f(Ct,p(Ct,#;0))> —z}

t=kTy

e The optimal state-augmented policy parameters are obtained during the training and saved
as

0" = arg PR By, [ Lu(0)]

e This waives off the problem of re-optimizing the model parameters for every set of dual
variables
e During execution, the dual variables can be updated as

1 (m+1)Tp—1 +
”’m-l-l — [ﬂm — pmg (E Z f(Ct, p(Ct,G*))>]

t=mTy
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Training Phase

C; ﬂ[ p(Cis1|Ct, Pt) } » Ciny
lu’ Npﬂ 4’[ p(Ctvﬂao) - Pt —’[ f(C7p) —> ‘C’ﬂ(0>

J
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Execution Phase

C, >[ P(Ci11|Ct, Pr) } » C,y

[ p(Cy, p;67) }—» Pt £(C,p) }

Hm y P[P(#mﬂll'maf(ctapt))]'—'V Hm+1

e The State-Augmentation algorithm can guarantee feasibility and near optimality - Navid NaderiAlizadeh et al,
“State-augmented learnable algorithms for resource management in wireless networks” [IEEE TSP 2022]
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Fig. 5: Comparison of two different unparameterized methods of
MoM and Dual Descent (DD) for a network with 10 nodes and 5
flows, where the network is run only for a single time step.
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Fig. 6: Comparison of the state-augmented algorithm with MoM
for a network with N= 20 nodes and F = 5 flows for 7=100.
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Fig. 7: Transferability of a GNN trained on networks with 20
nodes and tested on networks with 75 nodes (bottom) vs. a
GNN that has been both trained and tested on 75-node
networks (top).

Fig. 8: Transferability of the proposed state-augmented algorithm on
networks with different nodes while they were trained on a network
with 20 nodes and 5 flows.
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Fig. 9: Behavior of a dual variable and queue length stability for an example node in a network with 50 nodes and 5 flows.
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THANK YOU !

Sourajit Das Navid NaderiAlizadeh Alejandro Ribeiro
University of Pennsylvania Duke University University of Pennsylvania
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