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= Cluster DNN models into two distinct groups by analyzing the first two columns of the mixing
matrix A from VA and PARAFACZ; trojan models form a dense cluster separate from clean
models, demonstrating spatial separation in feature space.

= PARAFAC?2 provides reliable clustering without the need for PCA, as shown by high silhouette
scores in the table, indicating strong within-cluster similarity and clear separation between

= Feature Extraction: Extract final layer activations for K DNNs and then apply Random
Projection for feature extraction.

= Backdoor Detection: Apply IVA and PARAFACZ2 to decompose the feature tensors,
identifying correlated source component vectors across K DNNs. Models are classified as
backdoored or clean based on the cross-correlation matrix and p-values.

= The widespread use of pre-trained neural network models, due to the prohibitive costs and
resources required to train large models from scratch, introduces risks of embedded malicious
behaviors (e.g., backdoors or trojans) that can manipulate the model’s output in subtle but
dangerous ways.

= Existing methods for detecting such malicious alterations in models often assume knowledge

about the nature of the triggers or are limited to specific network architectures and do not clusters.
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= CIFAR-10 CNN Dataset: Utilized 550 ResNet-18 models on CIFAR-10, half with a white comparable AC method, effectively balancing speed and reliability in backdoor detection.

patch backdoor, showing a 98.89% attack success rate. Figure 1. Correlation matrices from IVA and PARAFAC?2 for TrojAl | - R50 models. The first 22 are backdoored and

= TrojAl Dataset: Used TrojAl Image Classification dataset across three architectures for the last 16 are clean. Red boxes signal significant correlations; a model with any red box is flagged as backdoored. - — — "
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